Research article Special Issues

The averaging principle for stochastic differential equations with Lévy noise involving conformable fractional derivative

  • Received: 15 June 2025 Revised: 12 August 2025 Accepted: 19 August 2025 Published: 28 August 2025
  • MSC : 26A33, 34A37

  • In this paper, the averaging principle for conformable fractional stochastic differential equations with Lévy noise is investigated. Initially, the averaging principle for classical Itô-type conformable fractional stochastic differential equations is presented. Subsequently, the averaging principle is extended to the case involving Lévy noise. Different from the approach of integration by parts or decomposing integral interval to deal with the estimation of integral involving singular kernel, this study introduces a novel method to assess the error between the averaged stochastic equation and the original stochastic differential equations, thereby effectively addressing the challenge posed by singular kernels. Finally, a simulation example is provided to validate the theoretical analysis.

    Citation: Yuan Yuan, Guanli Xiao, Lulu Ren. The averaging principle for stochastic differential equations with Lévy noise involving conformable fractional derivative[J]. AIMS Mathematics, 2025, 10(8): 19775-19794. doi: 10.3934/math.2025882

    Related Papers:

  • In this paper, the averaging principle for conformable fractional stochastic differential equations with Lévy noise is investigated. Initially, the averaging principle for classical Itô-type conformable fractional stochastic differential equations is presented. Subsequently, the averaging principle is extended to the case involving Lévy noise. Different from the approach of integration by parts or decomposing integral interval to deal with the estimation of integral involving singular kernel, this study introduces a novel method to assess the error between the averaged stochastic equation and the original stochastic differential equations, thereby effectively addressing the challenge posed by singular kernels. Finally, a simulation example is provided to validate the theoretical analysis.



    加载中


    [1] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds, World scientific, 2016. https://doi.org/10.1142/10238
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [3] L. Ren, J. Wang, M. Fečkan, Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 21 (2018), 1294–1312. https://doi.org/10.1515/fca-2018-0068 doi: 10.1515/fca-2018-0068
    [4] L. Ren, J. Wang, M. Fečkan, Periodic mild solutions of impulsive fractional evolution equations, AIMS Mathematics, 5 (2020), 497–506. https://doi.org/10.3934/math.2020033 doi: 10.3934/math.2020033
    [5] D. Yang, J. Wang, Non-instantaneous impulsive fractional-order implicit differential equations with random effects, Stoch. Anal. Appl., 35 (2017), 719–741. https://doi.org/10.1080/07362994.2017.1319771 doi: 10.1080/07362994.2017.1319771
    [6] T. Sathiyaraj, J. Wang, P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Optim., 84 (2021), 2527–2554. https://doi.org/10.1007/s00245-020-09716-w doi: 10.1007/s00245-020-09716-w
    [7] J. Wang, T. Sathiyaraj, D. O'Regan, Relative controllability of a stochastic system using fractional delayed sine and cosine matrices, Nonlinear Anal. Model., 26 (2021), 1031–1051. https://doi.org/10.15388/namc.2021.26.24265 doi: 10.15388/namc.2021.26.24265
    [8] D. T. Son, P. T. Huong, P. E. Kloeden, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stoch. Anal. Appl., 36 (2018), 654–664. https://doi.org/10.1080/07362994.2018.1440243 doi: 10.1080/07362994.2018.1440243
    [9] G. Xiao, J. Wang, Stability of solutions of Caputo fractional stochastic differential equations, Nonlinear Anal. Model., 26 (2021), 581–596. https://doi.org/10.15388/namc.2021.26.22421 doi: 10.15388/namc.2021.26.22421
    [10] G. Xiao, L. Ren, R. Liu, Finite-time stability of equilibrium points of nonlinear fractional stochastic differential equations, Fractal Fract., 9 (2025), 510. https://doi.org/10.3390/fractalfract9080510 doi: 10.3390/fractalfract9080510
    [11] D. Luo, Q. Zhu, Z. Zhang, An averaging principle for stochastic fractional differential equations with time-delays, Appl. Math. Lett., 105 (2020), 106290. https://doi.org/10.1016/j.aml.2020.106290 doi: 10.1016/j.aml.2020.106290
    [12] M. Li, J. Wang, The existence and averaging principle for Caputo fractional stochastic delay differential systems, Fract. Calc. Appl. Anal., 26 (2023), 893–912. https://doi.org/10.1007/s13540-023-00146-3 doi: 10.1007/s13540-023-00146-3
    [13] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [14] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [15] E. Ünal, A. Gökdoğan, Solution of conformable fractional ordinary differential equations via differential transform method, Optik, 128 (2017), 264–273. https://doi.org/10.1016/j.ijleo.2016.10.031 doi: 10.1016/j.ijleo.2016.10.031
    [16] G. Xiao J. Wang, Representation of solutions of linear conformable delay differential equations, Appl. Math. Lett., 117 (2021), 107088 https://doi.org/10.1016/j.aml.2021.107088 doi: 10.1016/j.aml.2021.107088
    [17] T. Yang, J. Wang, D. O'Regan, Representation of solutions to fuzzy linear conformable differential equations, Filomat, 36 (2022), 255–273. https://doi.org/10.2298/FIL2201255Y doi: 10.2298/FIL2201255Y
    [18] X. Ma, W. Wu, B. Zeng, Y. Wang, X. Wu, The conformable fractional grey system model, ISA T., 96 (2020), 255–271. https://doi.org/10.1016/j.isatra.2019.07.009 doi: 10.1016/j.isatra.2019.07.009
    [19] G. Xiao, J. Wang, D. O'Regan, Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations, Chaos Soliton. Fract., 139 (2020), 110269. https://doi.org/10.1016/j.chaos.2020.110269 doi: 10.1016/j.chaos.2020.110269
    [20] G. Xiao, J. Wang, D. O'Regan, Existence and stability of solutions to neutral conformable stochastic functional differential equations, Qual. Theory Dyn. Syst., 21 (2022), 7. https://doi.org/10.1007/s12346-021-00538-x doi: 10.1007/s12346-021-00538-x
    [21] G. Xiao, J. Wang, On the stability of solutions to conformable stochastic differential equations, Miskolc Math. Notes, 21 (2020), 509–523. https://doi.org/10.18514/MMN.2020.3257 doi: 10.18514/MMN.2020.3257
    [22] M. Luo, J. Wang, D. O'Regan, A class of conformable backward stochastic differential equations with jumps, Miskolc Math. Notes, 23 (2022), 811–845. https://doi.org/10.18514/MMN.2022.3766 doi: 10.18514/MMN.2022.3766
    [23] M. Luo, M. Fečkan, J. Wang, D. O'Regan, $g$-Expectation for conformable backward stochastic differential equations, Axioms, 11 (2022), 75. https://doi.org/10.3390/axioms11020075 doi: 10.3390/axioms11020075
    [24] T. Ennouari, B. Abouzaid, On the regional controllability and observability for infinite-dimensional conformable systems, Filomat, 38 (2024), 10435–10445. https://doi.org/10.2298/FIL2429435E doi: 10.2298/FIL2429435E
    [25] X. Mao, Stochastic differential equations and application, Second edition, Cambridge: Horwood Publishing Limited, 2007.
    [26] R. Z. Khasminskii, On the principle of averaging the Itô stochastic differential equations, Kibernetika, 4 (1968), 260–279.
    [27] Q. Zhu, Stability of stochastic differential equations with Lévy noise, In: Proceedings of the 33rd Chinese Control Conference, 2014, 5211–5216. https://doi.org/10.1109/ChiCC.2014.6895828
    [28] L. Ren, G. Xiao, The averaging principle for Caputo type fractional stochastic differential equations with Lévy noise, Fractal Fract., 8 (2024), 595. https://doi.org/10.3390/fractalfract8100595 doi: 10.3390/fractalfract8100595
    [29] Y. Xu, J. Duan, W. Xu, An averaging principle for stochastic dynamical systems with Lévy noise, Physica D, 240 (2011), 1395–1401. https://doi.org/10.1016/j.physd.2011.06.001 doi: 10.1016/j.physd.2011.06.001
    [30] J. Zou, D. Luo, On the averaging principle of Caputo type neutral fractional stochastic differential equations, Qualitative Theory of Dynamical Systems, 82 (2024), 23. https://doi.org/10.1007/s12346-023-00916-7 doi: 10.1007/s12346-023-00916-7
    [31] G. Shen, W. Xu, J. Wu, An averaging principle for stochastic differential delay equations driven by time-changed Lévy noise, Acta Math. Sci., 42 (2022), 540–550. https://doi.org/10.1007/s10473-022-0208-7 doi: 10.1007/s10473-022-0208-7
    [32] G. Shen, R. Xiao, X. Yin, Averaging principle and stability of hybrid stochastic fractional differential equations driven by Lévy noise, Int. J. Syst. Sci., 51 (2020), 2115–2133. https://doi.org/10.1080/00207721.2020.1784493 doi: 10.1080/00207721.2020.1784493
    [33] W. Xu, J. Duan, W. Xu, An averaging principle for fractional stochastic differential equations with Lévy noise, Chaos, 30 (2020), 083126. https://doi.org/10.1063/5.0010551 doi: 10.1063/5.0010551
    [34] Z. Guo, H. Fu, W. Wang, An averaging principle for Caputo fractional stochastic differential equations with compensated Poisson random measure, J. Partial Differ. Eq., 35 (2022), 1–10. https://doi.org/10.4208/jpde.v35.n1.1 doi: 10.4208/jpde.v35.n1.1
    [35] W. Xu, W. Xu, S. Zhang, The averaging principle for stochastic differential equations with Caputo fractional derivative, Appl. Math. Lett., 93 (2019), 79–84. https://doi.org/10.1016/j.aml.2019.02.005 doi: 10.1016/j.aml.2019.02.005
    [36] W. Xu, J. Duan, W. Xu, An averaging principle for fractional stochastic differential equations with Lévy noise, Chaos, 30 (2020), 083126. https://doi.org/10.1063/5.0010551 doi: 10.1063/5.0010551
    [37] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061
    [38] P. Umamaheswari, K. Balachandran, N. Annapoorani, Existence and stability results for Caputo fractional stochastic differential equations with Lévy noise, Filomat, 34 (2020), 1739–1751. https://doi.org/10.2298/FIL2005739U doi: 10.2298/FIL2005739U
    [39] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-25847-3
    [40] G. Xiao, M. Fečkan, J. Wang, On the averaging principle for stochastic differential equations involving Caputo fractional derivative, Chaos, 32 (2022), 101105. https://doi.org/10.1063/5.0108050 doi: 10.1063/5.0108050
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(320) PDF downloads(19) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog