This paper investigated resilient containment control ($ {\mathcal{CC}} $)-based consensus in fractional-order multi-agent systems ($ {\mathcal{FOMAS}s} $) subject to parametric uncertainties, communication time delays, and external disturbances. A non-fragile ($ \mathcal{NF} $) distributed control protocol was proposed to accommodate controller perturbations and delay variations simultaneously. By integrating fractional calculus, algebraic graph theory, and an improved Razumikhin technique, we derived concise algebraic conditions ensuring all followers asymptotically converge to the convex hull that the leaders form under worst-case uncertainties. The results cover non-delayed and delayed cases and are expressed as simple, verifiable matrix inequalities. At the end, we provide examples to demonstrate the feasibility of the proposed method, including a numerical case study, and we illustrate the applicability of the developed theoretical results through designing a controller for electronic circuits.
Citation: Revathi Santhana Gopalan, Mallika Arjunan Mani, Jae Hoon Jeong. Resilient containment control of fractional-order multi-agent systems with uncertainty and time delay via non-fragile approaches[J]. AIMS Mathematics, 2025, 10(8): 19712-19737. doi: 10.3934/math.2025879
This paper investigated resilient containment control ($ {\mathcal{CC}} $)-based consensus in fractional-order multi-agent systems ($ {\mathcal{FOMAS}s} $) subject to parametric uncertainties, communication time delays, and external disturbances. A non-fragile ($ \mathcal{NF} $) distributed control protocol was proposed to accommodate controller perturbations and delay variations simultaneously. By integrating fractional calculus, algebraic graph theory, and an improved Razumikhin technique, we derived concise algebraic conditions ensuring all followers asymptotically converge to the convex hull that the leaders form under worst-case uncertainties. The results cover non-delayed and delayed cases and are expressed as simple, verifiable matrix inequalities. At the end, we provide examples to demonstrate the feasibility of the proposed method, including a numerical case study, and we illustrate the applicability of the developed theoretical results through designing a controller for electronic circuits.
| [1] |
M. Syed Ali, R. Agalya, Z. Orman, S. Arik, Leader-following consensus of non-linear multi-agent systems with interval time-varying delay via impulsive control, Neural Process. Lett., 53 (2020), 69–83. http://dx.doi.org/10.1007/s11063-020-10384-8 doi: 10.1007/s11063-020-10384-8
|
| [2] |
X. Y. Liu, H. B. Fu, L. Lei, Leader-following mean square consensus of stochastic multi-agent systems via periodically intermittent event-triggered control, Neural Process. Lett., 53 (2021), 275–298. http://dx.doi.org/10.1007/s11063-020-10388-4 doi: 10.1007/s11063-020-10388-4
|
| [3] |
A. Stephen, A. Pratap, Disturbance observer-based integral sliding-mode control design for leader-following consensus of multi-agent systems and its application to car-following model, Chaos Soliton. Fract., 174 (2023), 113733. http://dx.doi.org/10.1016/j.chaos.2023.113733 doi: 10.1016/j.chaos.2023.113733
|
| [4] |
A. Stephen, K. Rajakopal, R. Raja, A. Srinidhi, K. Thamilmaran, R. P. Agarwal, Non-fragile reliable control for multi-agent systems with actuator faults using an improved LK functional, Nonlinear Dyn., 113 (2025), 6645–6669. http://dx.doi.org/10.1007/s11071-024-10441-0 doi: 10.1007/s11071-024-10441-0
|
| [5] |
A. Stephen, R. Raja, A. Pratap, Y. Cao, Synchronization of nonlinear multi-agent systems using a non-fragile sampled data control approach and its application to circuit systems, Front. Inform. Tech. El., 24 (2023), 553–566. http://dx.doi.org/10.1631/FITEE.2200181 doi: 10.1631/FITEE.2200181
|
| [6] | A. Stephen, R. Raja, J. Alzabut, Q. Zhu, M. Niezabitowski, C. P. Lim, A Lyapunov-Krasovskii functional approach to stability and linear feedback synchronization control for nonlinear multi‐agent systems with mixed time delays, Math. Probl. Eng., 2021 (2021), 6616857. http://dx.doi.org/10.1155/2021/6616857 |
| [7] |
P. Lin, Y. M. Jia, Distributed rotating formation control of multi-agent systems, Syst. Control Lett., 59 (2010), 587–595. http://dx.doi.org/10.1016/j.sysconle.2010.06.015 doi: 10.1016/j.sysconle.2010.06.015
|
| [8] |
D. Y. Meng, Y. M. Jia, Formation control for multi-agent systems through an iterative learning design approach, Int. J. Robust Nonlin., 24 (2014), 340–361. http://dx.doi.org/10.1002/rnc.2890 doi: 10.1002/rnc.2890
|
| [9] |
Q. Song, F. Liu, H. S. Su, A. V. Vasilakos, Semi-global and global containment control of multi-agent systems with second-order dynamics and input saturation, Int. J. Robust Nonlin., 26 (2016), 3460–3480. http://dx.doi.org/10.1002/rnc.3515 doi: 10.1002/rnc.3515
|
| [10] |
J. Q. Hu, J. Yu, J. D. Cao, Distributed containment control for nonlinear multi-agent systems with time-delayed protocol, Asian J. Control, 18 (2016), 747–756. http://dx.doi.org/10.1002/asjc.1131 doi: 10.1002/asjc.1131
|
| [11] |
A. Alsinai, A. U. K. Niazi, M. Z. Babar, A. Jamil, N. Faisal, Robust resilient base containment control of fractional order multiagent systems with disturbance and time delays, Math. Method. Appl. Sci., 48 (2025), 8851–8863. http://dx.doi.org/10.1002/mma.10758 doi: 10.1002/mma.10758
|
| [12] |
J. Yuan, T. Chen, Switched fractional order multiagent systems containment control with event-triggered mechanism and Input quantization, Fractal Fract., 6 (2022), 77. http://dx.doi.org/10.3390/fractalfract6020077 doi: 10.3390/fractalfract6020077
|
| [13] | W. Yu, G. Wen, G. Chen, J. Cao, Distributed cooperative control of multi-agent systems, John Wiley & Sons, 2016. |
| [14] |
H. Hu, Q. Zhu, M. Hou, Constraint-coupled distributed coordination control for nonlinear stochastic multiagent systems: application to power resource allocation, IEEE T. Syst. Man. Cy. S., 55 (2025), 5520–5530. http://dx.doi.org/10.1109/TSMC.2025.3570640 doi: 10.1109/TSMC.2025.3570640
|
| [15] |
G. Zhang, C. Liang, Q. Zhu, Adaptive fuzzy event-triggered optimized consensus control for delayed unknown stochastic nonlinear multi-agent systems using simplified ADP, IEEE T. Autom. Sci. Eng., 22 (2025), 11780–11793. http://dx.doi.org/10.1109/TASE.2025.3540468 doi: 10.1109/TASE.2025.3540468
|
| [16] |
S. Chen, Q. An, Y. Ye, H. Su, Positive consensus of fractional-order multi-agent systems, Neural Comput. Appl., 33 (2021), 16139–16148. http://dx.doi.org/10.1007/s00521-021-06213-1 doi: 10.1007/s00521-021-06213-1
|
| [17] |
R. Yang, S. Liu, Y. Tan, Y. Zhang, W. Jiang, Consensus analysis of fractional-order nonlinear multi-agent systems with distributed and input delays, Neurocomputing, 329 (2019), 46–52. http://dx.doi.org/10.1016/j.neucom.2018.10.045 doi: 10.1016/j.neucom.2018.10.045
|
| [18] |
X. Liu, K. Zhang, W. C. Xie, Consensus seeking in multi-agent systems via hybrid protocols with impulse delays, Nonlinear Anal. Hybri., 25 (2017), 90–98. http://dx.doi.org/10.1016/j.nahs.2017.03.002 doi: 10.1016/j.nahs.2017.03.002
|
| [19] |
H. Yang, S. Li, L. Yang, Z. Ding, Leader-following consensus of fractional-order uncertain multi-agent systems with time delays, Neural Process. Lett., 54 (2022), 4829–4849. http://dx.doi.org/10.1007/s11063-022-10837-2 doi: 10.1007/s11063-022-10837-2
|
| [20] |
C. Deng, G. H. Yang, Leaderless and leader-following consensus of linear multi-agent systems with distributed event-triggered estimators, J. Franklin I., 356 (2019), 309–333. http://dx.doi.org/10.1016/j.jfranklin.2018.10.001 doi: 10.1016/j.jfranklin.2018.10.001
|
| [21] |
S. Liu, X. Fu, X. W. Zhao, D. Pang, Containment control for fractional-order multi-agent systems with mixed time-delays, Math. Method. Appl. Sci., 46 (2023), 3176–3186. http://dx.doi.org/10.1002/mma.8002 doi: 10.1002/mma.8002
|
| [22] |
R. Yang, S. Liu, X. Li, Observer-based bipartite containment control of fractional multi-agent systems with mixed delays, Inform. Sciences, 626 (2023), 204–222. http://dx.doi.org/10.1016/j.ins.2023.01.025 doi: 10.1016/j.ins.2023.01.025
|
| [23] |
A. Khan, A. U. K. Niazi, W. Abbasi, A. Jamil, J. A. Malik, Control design for fractional order leader and follower systems with mixed time delays: A resilience-based approach, Fractal Fract., 7 (2023), 409. http://dx.doi.org/10.3390/fractalfract7050409 doi: 10.3390/fractalfract7050409
|
| [24] |
D. Pang, S. Liu, X. W. Zhao, Containment control analysis of delayed nonlinear fractional-order multi-agent systems, Math. Method. Appl. Sci., 48 (2025), 8462–8479. http://dx.doi.org/10.1002/mma.10354 doi: 10.1002/mma.10354
|
| [25] |
A. Khan, M. A. Javeed, S. Rehman, A. U. K. Niazi, Y. Zhong, Advanced observation-based bipartite containment control of fractional-order multi-agent systems considering hostile environments, nonlinear delayed dynamics, and disturbance compensation, Fractal Fract., 8 (2024), 473. http://dx.doi.org/10.3390/fractalfract8080473 doi: 10.3390/fractalfract8080473
|
| [26] |
M. Thummalapeta, Y. C. Liu, Survey of containment control in multi-agent systems: Concepts, communication, dynamics, and controller design, Int. J. Syst. Sci., 54 (2023), 2809–2835. http://dx.doi.org/10.1080/00207721.2023.2250041 doi: 10.1080/00207721.2023.2250041
|
| [27] |
X. Zhao, H. Wu, J. Cao, L. Wang, Prescribed-time synchronization for complex dynamic networks of piecewise smooth systems: A hybrid event-triggering control approach, Qual. Theory Dyn. Syst., 24 (2025), 11. http://dx.doi.org/10.1007/s12346-024-01166-x doi: 10.1007/s12346-024-01166-x
|
| [28] |
H. Wu, X. Zhao, L. Wang, J. Cao, Observer-based fixed-time topology identification and synchronization for complex networks via quantized pinning control strategy, Appl. Math. Comput., 507 (2025), 129568. http://dx.doi.org/10.1016/j.amc.2025.129568 doi: 10.1016/j.amc.2025.129568
|
| [29] |
X. Jin, S. Wang, J. Qin, W. X. Zheng, Y. Kang, Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation, IEEE T. Circuits I, 65 (2018), 2243–2255. http://dx.doi.org/10.1109/TCSI.2017.2782729 doi: 10.1109/TCSI.2017.2782729
|
| [30] |
X. Jin, S. Lu, J. Yu, Adaptive NN-based consensus for a class of nonlinear multiagent systems with actuator faults and faulty networks, IEEE T. Neur. Net. Lear., 33 (2022), 3474–3486. http://dx.doi.org/10.1109/TNNLS.2021.3053112 doi: 10.1109/TNNLS.2021.3053112
|
| [31] |
C. Deng, X. Z. Jin, W. W. Che, H. Wang, Learning-based distributed resilient fault-tolerant control method for heterogeneous MASs under unknown leader dynamic, IEEE T. Neur. Net. Lear., 33 (2022), 5504–5513. http://dx.doi.org/10.1109/TNNLS.2021.3070869 doi: 10.1109/TNNLS.2021.3070869
|
| [32] |
S. Liu, R. Yang, X. Li, J. Xiao, Global attractiveness and consensus for Riemann-Liouville's nonlinear fractional systems with mixed time-delays, Chaos Soliton. Fract., 143 (2021), 110577. http://dx.doi.org/10.1016/j.chaos.2020.110577 doi: 10.1016/j.chaos.2020.110577
|
| [33] |
A. Pratap, Delay-independent stability criteria for fractional order time delayed gene regulatory networks in terms of Mittag-Leffler function, Chinese J. Phys., 77 (2022), 845–860. http://dx.doi.org/10.1016/j.cjph.2021.09.007 doi: 10.1016/j.cjph.2021.09.007
|
| [34] |
A. Pratap, Y. H. Joo, Stabilization analysis of fractional-order nonlinear permanent magnet synchronous motor model via interval type-2 fuzzy memory-based fault-tolerant control scheme, ISA Trans., 142 (2023), 310–324. http://dx.doi.org/10.1016/j.isatra.2023.08.021 doi: 10.1016/j.isatra.2023.08.021
|
| [35] |
A. Pratap, Y. H. Joo, Design of memory-based adaptive integral sliding-mode controller for fractional-order TS fuzzy systems and its applications, J. Franklin I., 359 (2022), 8819–8847. http://dx.doi.org/10.1016/j.jfranklin.2022.08.040 doi: 10.1016/j.jfranklin.2022.08.040
|
| [36] |
H. Yang, F. Wang, F. Han, Containment control of fractional order multi-agent systems with time delays, IEEE/CAA J. Automatic., 5 (2018), 727–732. http://dx.doi.org/10.1109/JAS.2016.7510211 doi: 10.1109/JAS.2016.7510211
|
| [37] |
W. Zou, Z. Xiang, Containment control of fractional-order nonlinear multi-agent systems under fixed topologies, IMA J. Math. Control I., 35 (2018), 1027–1041. http://dx.doi.org/10.1093/imamci/dnx013 doi: 10.1093/imamci/dnx013
|
| [38] |
H. Liu, G. Xie, Y. Gao, Containment control of fractional-order multi-agent systems with time-varying delays, J. Franklin I., 356 (2019), 9992–10014. http://dx.doi.org/10.1016/j.jfranklin.2019.01.057 doi: 10.1016/j.jfranklin.2019.01.057
|
| [39] |
H. Liu, G. Xie, M. Yu, Necessary and sufficient conditions for containment control of fractional-order multi-agent systems, Neurocomputing, 323 (2019), 86–95. http://dx.doi.org/10.1016/j.neucom.2018.09.067 doi: 10.1016/j.neucom.2018.09.067
|
| [40] |
J. Shen, Y. K. Cui, H. Feng, S. H. Tsai, Containment control of fractional-order networked systems with time-varying communication delays: a positive system viewpoint, IEEE Access, 7 (2019), 130700–130706. http://dx.doi.org/10.1109/ACCESS.2019.2940267 doi: 10.1109/ACCESS.2019.2940267
|
| [41] |
H. Xu, Q. Zhu, W. X. Zheng, New criteria on input-to-state stability for stochastic nonlinear delayed systems with multiple impulses, IEEE T. Syst. Man Cy. S., 55 (2025), 5619–5627. http://dx.doi.org/10.1109/TSMC.2025.3572289 doi: 10.1109/TSMC.2025.3572289
|
| [42] |
Z. Zhu, Q. Zhu, Adaptive fuzzy decentralized control for stochastic nonlinear interconnected system with non-triangular structural dynamic uncertainties, IEEE T. Fuzzy Syst., 31 (2023), 2593–2604. http://dx.doi.org/10.1109/TFUZZ.2022.3229073 doi: 10.1109/TFUZZ.2022.3229073
|
| [43] | L. Zhou, J. Han, Z. Zhao, Q. Zhu, T. Huang, Global polynomial synchronization of proportional delay memristive competitive neural networks with uncertain parameters for image encryption, IEEE Trans. Syst. Man Cy. S., 2025. http://dx.doi.org/10.1109/TSMC.2025.3577201 |
| [44] |
L. Chen, X. Li, Y. Chen, R. Wu, Antonio M. Lopes, S. Ge, Leader-follower non-fragile consensus of delayed fractional-order nonlinear multi-agent systems, Appl. Math. Comput., 414 (2022), 126688. http://dx.doi.org/10.1016/j.amc.2021.126688 doi: 10.1016/j.amc.2021.126688
|
| [45] |
D. Zhao, Y. Li, S. Li, Z. Ca, Distributed event-triggered impulsive tracking control for fractional-order multiagent network, IEEE T. Syst. Man Cy. S., 52 (2022), 4544–4556. http://dx.doi.org/10.1109/TSMC.2021.3096975 doi: 10.1109/TSMC.2021.3096975
|
| [46] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
| [47] |
M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci., 22 (2015), 650–659. http://dx.doi.org/10.1016/j.cnsns.2014.10.008 doi: 10.1016/j.cnsns.2014.10.008
|
| [48] |
S. Liu, R. Yang, X. Zhou, W. Jiang, X. Li, X. Zhao, Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems, Commun. Nonlinear Sci., 73 (2019), 351–362. http://dx.doi.org/10.1016/j.cnsns.2019.02.019 doi: 10.1016/j.cnsns.2019.02.019
|