This paper introduces novel nonparametric classes of lifetime distributions characterized by the shape of the failure rate function. Particular reputable parametric distributions are examined to lie within these novel classes. Preservation property of one of these classes under order statistics is established. An empirical estimator of the failure rate ratio is proposed and in a simulation study, its attributes are explored. Then, a data set of strength of glass fibers is analyzed.
Citation: Mohamed Kayid, Mutairah Alanazi. Reliability and aging properties of novel nonparametric lifetime distribution classes[J]. AIMS Mathematics, 2025, 10(8): 19693-19711. doi: 10.3934/math.2025878
This paper introduces novel nonparametric classes of lifetime distributions characterized by the shape of the failure rate function. Particular reputable parametric distributions are examined to lie within these novel classes. Preservation property of one of these classes under order statistics is established. An empirical estimator of the failure rate ratio is proposed and in a simulation study, its attributes are explored. Then, a data set of strength of glass fibers is analyzed.
| [1] |
J. Navarro, J. M. Sarabia, A note on the limiting behavior of hazard rate functions of generalized mixtures, J. Comput. Appl. Math., 435 (2024), 114653. https://doi.org/10.1016/j.cam.2022.114653 doi: 10.1016/j.cam.2022.114653
|
| [2] | C. D. Lai, M. Xie, Stochastic ageing and dependence for reliability, New York: Springer, 2006. https://doi.org/10.1007/0-387-34232-X |
| [3] | M. Finkelstein, Failure rate modelling for reliability and risk, Springer, New York, 2008. https://doi.org/10.1007/978-1-84800-986-8 |
| [4] | J. Navarro, Aging properties, In: Introduction to system reliability theory, Cham: Springer, 2022. |
| [5] |
R. Righter, M. Shaked, J. G. Shanthikumar, Intrinsic aging and classes of nonparametric distributions, Probab. Eng. Inf. Sci., 23 (2009), 563–582. https://doi.org/10.1017/S0269964809990015 doi: 10.1017/S0269964809990015
|
| [6] |
M. Kayid, M. A. Alshehri, Stochastic aspects of reversed aging intensity function of random quantiles, J. Inequal. Appl., 2024 (2024), 119. https://doi.org/10.1186/s13660-024-03198-y doi: 10.1186/s13660-024-03198-y
|
| [7] |
P. E. Oliveira, N. Torrado, On proportional reversed failure rate class, Stat. Pap., 56 (2015), 999–1013. https://doi.org/10.1007/s00362-014-0620-8 doi: 10.1007/s00362-014-0620-8
|
| [8] |
M. Burkschat, Multivariate dependence of spacings of generalized order statistics, J. Multivar. Anal., 100 (2009), 1093–1106. https://doi.org/10.1016/j.jmva.2008.10.008 doi: 10.1016/j.jmva.2008.10.008
|
| [9] | M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-34675-5 |
| [10] |
M. Kayid, R. A. Almohsen, Preservation of relative failure rate and relative reversed failure rate orders by distorted distributions, Acta Appl. Math., 194 (2024), 1–15. https://doi.org/10.1007/s10440-024-00704-8 doi: 10.1007/s10440-024-00704-8
|
| [11] |
J. Navarro, Y. del Águila, M. A. Sordo, A. Suárez‐Llorens, Preservation of reliability classes under the formation of coherent systems, Appl. Stoch. Models Bus. Ind., 30 (2014), 444–454. https://doi.org/10.1002/asmb.1985 doi: 10.1002/asmb.1985
|
| [12] |
J. Navarro, Preservation of DMRL and IMRL aging classes under the formation of order statistics and coherent systems, Stat. Probab. Lett., 137 (2018), 264–268. https://doi.org/10.1016/j.spl.2018.02.005 doi: 10.1016/j.spl.2018.02.005
|
| [13] |
B. H. Lindqvist, F. J. Samaniego, Some new results on the preservation of the NBUE and NWUE aging classes under the formation of coherent systems, Naval Res. Logist., 66 (2019), 430–438. https://doi.org/10.1002/nav.21849 doi: 10.1002/nav.21849
|
| [14] |
F. G. Badía, J. H. Cha, H. Lee, C. Sangüesa, Preservation of the log concavity by Bernstein operator with an application to ageing properties of a coherent system, J. Comput. Appl. Math., 443 (2024), 115748. https://doi.org/10.1016/j.cam.2023.115748 doi: 10.1016/j.cam.2023.115748
|
| [15] |
P. H. Kvam, H. Singh, L. R. Whitaker, Estimating distributions with increasing failure rate in an imperfect repair model, Lifetime Data Anal., 8 (2002), 53–67. https://doi.org/10.1023/A:1013570832286 doi: 10.1023/A:1013570832286
|
| [16] |
A. J. Fernández, Computing optimal confidence sets for Pareto models under progressive censoring, J. Comput. Appl. Math., 258 (2014), 168–180. https://doi.org/10.1016/j.cam.2013.09.014 doi: 10.1016/j.cam.2013.09.014
|
| [17] | E. Parzen, On estimation of a probability density function and mode, Ann. Math. Stat., 33 (1962), 1065–1076. |
| [18] |
R. L. Smith, J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. R. Stat. Soc. Ser. C (Appl. Stat.), 36 (1987), 358–369. https://doi.org/10.2307/2347795 doi: 10.2307/2347795
|