Research article

Sparse signal recovery through a modified Dai-Yuan algorithm

  • Received: 18 May 2025 Revised: 01 August 2025 Accepted: 13 August 2025 Published: 27 August 2025
  • MSC : 65K10, 68U10

  • Sparse signal recovery is a concept that is not only central to compressed sensing problems, but also apparent in magnetic resonance imaging (MRI) problems, machine learning, as well as statistical inference. In each of these fields, the target is finding sparse solutions to linear systems of equations that are underdetermined or ill-conditioned. In this paper, an efficient modified Dai-Yuan conjugate gradient method that is globally convergent irrespective of the line search procedure employed was developed to reconstruct sparse signals in compressed sensing. Results of the experiments conducted show that the method is promising.

    Citation: Kabiru Ahmed, Mohammed Yusuf Waziri, Mohammed A. Saleh, Abdulgader Z. Almaymuni, Abubakar Sani Halilu, Mohamad Afendee Mohamed, Sulaiman M. Ibrahim, Salisu Murtala, Habibu Abdullahi. Sparse signal recovery through a modified Dai-Yuan algorithm[J]. AIMS Mathematics, 2025, 10(8): 19675-19692. doi: 10.3934/math.2025877

    Related Papers:

  • Sparse signal recovery is a concept that is not only central to compressed sensing problems, but also apparent in magnetic resonance imaging (MRI) problems, machine learning, as well as statistical inference. In each of these fields, the target is finding sparse solutions to linear systems of equations that are underdetermined or ill-conditioned. In this paper, an efficient modified Dai-Yuan conjugate gradient method that is globally convergent irrespective of the line search procedure employed was developed to reconstruct sparse signals in compressed sensing. Results of the experiments conducted show that the method is promising.



    加载中


    [1] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289–1306. https://doi.org/10.1109/TIT.2006.871582 doi: 10.1109/TIT.2006.871582
    [2] E. J. Candes, T. Tao, Near-optimal signal recovery from random projections: universal encoding stragies, IEEE Trans. Inform. Theory, 52 (2006), 5406–5425. https://doi.org/10.1109/TIT.2006.885507 doi: 10.1109/TIT.2006.885507
    [3] R. Arablouei, Fast reconstruction algorithm for perturbed compressive sensing based on total least-squares and proximal splitting, Signal Process., 130 (2017), 57–63. https://doi.org/10.1016/j.sigpro.2016.06.009 doi: 10.1016/j.sigpro.2016.06.009
    [4] H. F. Liu, J. G. Peng, Sparse signal recovery via alternating projection method, Signal Process., 143 (2018), 161–170. https://doi.org/10.1016/j.sigpro.2017.09.003 doi: 10.1016/j.sigpro.2017.09.003
    [5] S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, New York: Birkhäuser, 2013. https://doi.org/10.1007/978-0-8176-4948-7
    [6] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process., 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281
    [7] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program., 140 (2013), 125–161. https://doi.org/10.1007/s10107-012-0629-5 doi: 10.1007/s10107-012-0629-5
    [8] Y. H. Xiao, Q. Y. Wang, Q. J. Hu, Non-smooth equations based method for $\ell_1$-norm problems with applications to compressed sensing, Nonlinear Anal., 74 (2011), 3570–3577. https://doi.org/10.1016/j.na.2011.02.040 doi: 10.1016/j.na.2011.02.040
    [9] J. E. Dennis, Jr, J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), 46–89. https://doi.org/10.1137/1019005 doi: 10.1137/1019005
    [10] C. T. Kelly, Iterative methods for optimization, SIAM, 1999. https://doi.org/10.1137/1.9781611970920
    [11] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, New York: Academic Press, 1970. https://doi.org/10.1016/C2013-0-11263-9
    [12] J. E. Dennis, Jr, R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Englewood Cliffs: Prentice-Hall, 1983. https://doi.org/10.1137/1.9781611971200
    [13] M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, A new spectral conjugate gradient method with descent condition and global convergence property for unconstrained optimization, J. Math. Comput. Sci., 10 (2020), 2053–2069.
    [14] Y. Narushima, H. Yabe, A survey of sufficient descent conjugate gradient methods for unconstrained optimization, SUT J. Math., 50 (2014), 167–203. https://doi.org/10.55937/sut/1424782608 doi: 10.55937/sut/1424782608
    [15] W. W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods, Pac. J. Optim., 2 (2006), 35–58.
    [16] R. Fletcher, C. M. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), 149–154. https://doi.org/10.1093/comjnl/7.2.149 doi: 10.1093/comjnl/7.2.149
    [17] R. Fletcher, Practical method of optimization, John Wiley & Sons, 2000. https://doi.org/10.1002/9781118723203
    [18] Y. H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177–182. https://doi.org/10.1137/S1052623497318992 doi: 10.1137/S1052623497318992
    [19] M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bureau Standards, 49 (1952), 409–436. http://dx.doi.org/10.6028/jres.049.044 doi: 10.6028/jres.049.044
    [20] E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, Rev. Française D'informatique Rech. Opérationnelle Série Rouge, 3 (1969), 35–43. https://doi.org/10.1051/m2an/196903R100351 doi: 10.1051/m2an/196903R100351
    [21] B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comput. Math. Math. Phys., 9 (1969), 94–112. https://doi.org/10.1016/0041-5553(69)90035-4 doi: 10.1016/0041-5553(69)90035-4
    [22] Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, part 1: Theory, J. Optim. Theory Appl., 69 (1991), 129–137. https://doi.org/10.1007/BF00940464 doi: 10.1007/BF00940464
    [23] K. Ahmed, M. Y. Waziri, A. S. Halilu, I. A. R. Moghrabi, H. Abdullahi, S. M. Ibrahim, et al., A Dai-Kou-type method with image de-blurring application, J. Niger. Soc. Phys. Sci., 7 (2025), 2569. https://doi.org/10.46481/jnsps.2025.2569 doi: 10.46481/jnsps.2025.2569
    [24] K. Ahmed, M. Y. Waziri, A. S. Halilu, S. Murtala, H. Abdullahi, Signal and image reconstruction with a double parameter Hager-Zhang-type conjugate gradient method for system of nonlinear equations, Numer. Linear Algebra Appl., 32 (2025), e2583. https://doi.org/10.1002/nla.2583 doi: 10.1002/nla.2583
    [25] O. V. Michailovich, An iterative shrinkage approach to total-variation image restoration, IEEE Trans. Image Process., 20 (2011), 1281–1299. https://doi.org/10.1109/TIP.2010.2090532 doi: 10.1109/TIP.2010.2090532
    [26] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202. https://doi.org/10.1137/080716542 doi: 10.1137/080716542
    [27] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), 1–122. https://doi.org/10.1561/2200000016 doi: 10.1561/2200000016
    [28] H. X. Li, C. H. Shen, Q. F. Shi, Real-time visual tracking using compressive sensing, CVPR 2011, 2011, 1305–1312. https://doi.org/10.1109/CVPR.2011.5995483
    [29] J. K. Liu, S. J. Li, Spectral DY-type projection method for nonlinear monotone system of equations, J. Comput. Math., 33 (2015), 341–355. https://doi.org/10.4208/jcm.1412-m4494 doi: 10.4208/jcm.1412-m4494
    [30] M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, In: Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, New York: Springer, 1999,355–369. https://doi.org/10.1007/978-1-4757-6388-1_18
    [31] J. Barizilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141–148. https://doi.org/10.1093/imanum/8.1.141 doi: 10.1093/imanum/8.1.141
    [32] J. K. Liu, S. J. Li, Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations, J. Indust. Manag. Optim., 13 (2017), 283–295. https://doi.org/10.3934/jimo.2016017 doi: 10.3934/jimo.2016017
    [33] G. H. Yu, S. Z. Niu, J. H. Ma, Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, J. Indust. Manag. Optim., 9 (2013), 117–129. https://doi.org/10.3934/jimo.2013.9.117 doi: 10.3934/jimo.2013.9.117
    [34] Q. N. Li, D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625–1635. https://doi.org/10.1093/imanum/drq015 doi: 10.1093/imanum/drq015
    [35] J. K. Liu, Y. M. Feng, A derivative-free itertive method for nonlinear monotone equations with convex constraints, Numer. Algorithms, 82 (2019), 245–262. https://doi.org/10.1007/s11075-018-0603-2 doi: 10.1007/s11075-018-0603-2
    [36] S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya, K. Sitthithakerngkiet, An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery, AIMS Math., 6 (2021), 8078–8106. https://doi.org/10.3934/math.2021469 doi: 10.3934/math.2021469
    [37] A. Althobaiti, J. Sabi'u, H. Emadifar, P. Junsawang, S. K. Sahoo, A scaled Dai-Yuan projection-based conjugate gradient method for solving monotone equations with applications, Symmetry, 14 (2022), 1–27. https://doi.org/10.3390/sym14071401 doi: 10.3390/sym14071401
    [38] M. Y. Waziri, K. Ahmed, J. Sabi'u, A family of Hager-Zhang conjugate gradient methods for system of monotone nonlinear equations, Appl. Math. Comput., 361 (2019), 645–660. https://doi.org/10.1016/j.amc.2019.06.012 doi: 10.1016/j.amc.2019.06.012
    [39] X. L. Dong, H. W. Liu, Y. B. He, X. M. Yang, A modified Hestenes-Stiefel conjugate gradient method with sufficient descent and conjugacy condition, J. Comput. Appl. Math., 281 (2015), 239–249. https://doi.org/10.1016/j.cam.2014.11.058 doi: 10.1016/j.cam.2014.11.058
    [40] Z. Aminifard, S. Babaie-Kafaki, A modified descent Polak-Ribiere-Polyak conjugate gradient method with global convergence property for nonconvex functions, Calcolo, 56 (2019), 16. https://doi.org/10.1007/s10092-019-0312-9 doi: 10.1007/s10092-019-0312-9
    [41] M. Y. Waziri, K. Ahmed, A. S. Halilu, J. Sabi'u, Two new Hager-Zhang iterative schemes with improved parameter choices for monotone nonlinear systems and their applications in compressed sensing, RAIRO Oper. Res., 56 (2022), 239–273. https://doi.org/10.1051/ro/2021190 doi: 10.1051/ro/2021190
    [42] J. K. Liu, S. J. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70 (2015), 2442–2453. https://doi.org/10.1016/j.camwa.2015.09.014 doi: 10.1016/j.camwa.2015.09.014
    [43] Y. H. Xiao, H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310–319. https://doi.org/10.1016/j.jmaa.2013.04.017 doi: 10.1016/j.jmaa.2013.04.017
    [44] Z. Wan, J. Guo, J. J. Liu, W. Y. Liu, A modified spectral conjugate gradient projection method for signal recovery, Signal Image Video Process., 12 (2018), 1455–1462. https://doi.org/10.1007/s11760-018-1300-2 doi: 10.1007/s11760-018-1300-2
    [45] S. K. Ambat, K. V. S. Hari, An iterative framework for sparse signal reconstruction algorithms, Signal Process., 108 (2015), 351–364. https://doi.org/10.1016/j.sigpro.2014.09.023 doi: 10.1016/j.sigpro.2014.09.023
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(377) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog