Research article

Asymptotic formulas for Dirichlet convolutions

  • Received: 21 September 2024 Revised: 25 June 2025 Accepted: 15 July 2025 Published: 26 August 2025
  • MSC : 11N37, 11N64

  • In this paper, we use convoluting prime-number-theorem-related functions (Mobius, von Mangoldt, and Liouville) by the Piltz divisor function to research an asymptotic formula for the convolution sum $ (x\ge 1) $. Our main result is Theorem 1, which separates the error terms for the PNT-related functions and the Piltz divisor function. Under the assumption of the conjectural estimate for the latter, we obtain the expected error term as in PNT.

    Citation: Ruiyang Li, Hai Yang. Asymptotic formulas for Dirichlet convolutions[J]. AIMS Mathematics, 2025, 10(8): 19540-19553. doi: 10.3934/math.2025872

    Related Papers:

  • In this paper, we use convoluting prime-number-theorem-related functions (Mobius, von Mangoldt, and Liouville) by the Piltz divisor function to research an asymptotic formula for the convolution sum $ (x\ge 1) $. Our main result is Theorem 1, which separates the error terms for the PNT-related functions and the Piltz divisor function. Under the assumption of the conjectural estimate for the latter, we obtain the expected error term as in PNT.



    加载中


    [1] E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford: The Clarendon Press, 1986.
    [2] A. Ivić, The Riemann zeta function: theory and applications, Dover Publications, 2003.
    [3] A. G. Postnikov, Introduction to analytic number theory, Translations of Mathematical Monographs, Volume 68, American Mathematical Society, 1988. https://doi.org/10.1090/mmono/068
    [4] A. Walfisz, Weylsche exponentialsummen in der neueren zahlentheorie, Deutscher Verlag der Wissenschaften, 1963.
    [5] A. I. Saltykov, On Euler's function, (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., 6 (1960), 34–50.
    [6] H. Davenport, Multiplicative number theory, 2 Eds., New York: Springer, 1980. https://doi.org/10.1007/978-1-4757-5927-3
    [7] A. F. Lavrik, On the principal term in the divisor problem and the power series of the Riemann zeta-function in a neighborhood of its pole, Proc. Steklov Inst. Math., 142 (1979), 175–183.
    [8] J. J. Y. Liang, J. Todd, The Siteltjes constants, Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences, 768 (1972), 161–178. https://doi.org/10.6028/JRES.076B.012
    [9] M. I. Israilov, On the Laurent expansion of the Riemann zeta-function, Proc. Steklov Inst. Math., 158 (1983), 105–112.
    [10] F. Nudo, Two one-parameter families of nonconforming enrichments of the Crouzeix-Raviart finite element, Appl. Numer. Math., 203 (2024), 160–172. https://doi.org/10.1016/j.apnum.2024.05.023 doi: 10.1016/j.apnum.2024.05.023
    [11] F. Nudo, A general quadratic enrichment of the Crouzeix-Raviart finite element, J. Comput. Appl. Math., 451 (2024), 116112. https://doi.org/10.1016/j.cam.2024.116112 doi: 10.1016/j.cam.2024.116112
    [12] F. Dell'Accio, A. Guessab, F. Nudo, New quadratic and cubic polynomial enrichments of the Crouzeix-Raviart finite element, Comput. Math. Appl., 170 (2024), 204–212. https://doi.org/10.1016/j.camwa.2024.06.019 doi: 10.1016/j.camwa.2024.06.019
    [13] M. I. Stronina, Lattice points on circular cones, (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 8 (1969), 112–116.
    [14] E. Krätzel, Zahlen $k$-ter Art, American Journal of Mathematics, 94 (1972), 309–328. https://doi.org/10.2307/2373607
    [15] H. M. Srivastava, J. S. Choi, Zeta and $q$-zeta functions and associated series and integrals, Waltham: Elesevier, 2012. https://doi.org/10.1016/C2010-0-67023-4
    [16] F. V. Atkinson, A divisor problem, Q. J. Math., 12 (1941), 193–200. https://doi.org/10.1093/qmath/os-12.1.193
    [17] S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511661976
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(296) PDF downloads(13) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog