In this paper, we use convoluting prime-number-theorem-related functions (Mobius, von Mangoldt, and Liouville) by the Piltz divisor function to research an asymptotic formula for the convolution sum $ (x\ge 1) $. Our main result is Theorem 1, which separates the error terms for the PNT-related functions and the Piltz divisor function. Under the assumption of the conjectural estimate for the latter, we obtain the expected error term as in PNT.
Citation: Ruiyang Li, Hai Yang. Asymptotic formulas for Dirichlet convolutions[J]. AIMS Mathematics, 2025, 10(8): 19540-19553. doi: 10.3934/math.2025872
In this paper, we use convoluting prime-number-theorem-related functions (Mobius, von Mangoldt, and Liouville) by the Piltz divisor function to research an asymptotic formula for the convolution sum $ (x\ge 1) $. Our main result is Theorem 1, which separates the error terms for the PNT-related functions and the Piltz divisor function. Under the assumption of the conjectural estimate for the latter, we obtain the expected error term as in PNT.
| [1] | E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford: The Clarendon Press, 1986. |
| [2] | A. Ivić, The Riemann zeta function: theory and applications, Dover Publications, 2003. |
| [3] | A. G. Postnikov, Introduction to analytic number theory, Translations of Mathematical Monographs, Volume 68, American Mathematical Society, 1988. https://doi.org/10.1090/mmono/068 |
| [4] | A. Walfisz, Weylsche exponentialsummen in der neueren zahlentheorie, Deutscher Verlag der Wissenschaften, 1963. |
| [5] | A. I. Saltykov, On Euler's function, (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., 6 (1960), 34–50. |
| [6] | H. Davenport, Multiplicative number theory, 2 Eds., New York: Springer, 1980. https://doi.org/10.1007/978-1-4757-5927-3 |
| [7] | A. F. Lavrik, On the principal term in the divisor problem and the power series of the Riemann zeta-function in a neighborhood of its pole, Proc. Steklov Inst. Math., 142 (1979), 175–183. |
| [8] | J. J. Y. Liang, J. Todd, The Siteltjes constants, Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences, 768 (1972), 161–178. https://doi.org/10.6028/JRES.076B.012 |
| [9] | M. I. Israilov, On the Laurent expansion of the Riemann zeta-function, Proc. Steklov Inst. Math., 158 (1983), 105–112. |
| [10] |
F. Nudo, Two one-parameter families of nonconforming enrichments of the Crouzeix-Raviart finite element, Appl. Numer. Math., 203 (2024), 160–172. https://doi.org/10.1016/j.apnum.2024.05.023 doi: 10.1016/j.apnum.2024.05.023
|
| [11] |
F. Nudo, A general quadratic enrichment of the Crouzeix-Raviart finite element, J. Comput. Appl. Math., 451 (2024), 116112. https://doi.org/10.1016/j.cam.2024.116112 doi: 10.1016/j.cam.2024.116112
|
| [12] |
F. Dell'Accio, A. Guessab, F. Nudo, New quadratic and cubic polynomial enrichments of the Crouzeix-Raviart finite element, Comput. Math. Appl., 170 (2024), 204–212. https://doi.org/10.1016/j.camwa.2024.06.019 doi: 10.1016/j.camwa.2024.06.019
|
| [13] | M. I. Stronina, Lattice points on circular cones, (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 8 (1969), 112–116. |
| [14] | E. Krätzel, Zahlen $k$-ter Art, American Journal of Mathematics, 94 (1972), 309–328. https://doi.org/10.2307/2373607 |
| [15] | H. M. Srivastava, J. S. Choi, Zeta and $q$-zeta functions and associated series and integrals, Waltham: Elesevier, 2012. https://doi.org/10.1016/C2010-0-67023-4 |
| [16] | F. V. Atkinson, A divisor problem, Q. J. Math., 12 (1941), 193–200. https://doi.org/10.1093/qmath/os-12.1.193 |
| [17] | S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511661976 |