Research article Special Issues

Fault-tolerant coordination of robotic car teams via adaptive neural control and real-time fault isolation

  • Received: 19 June 2025 Revised: 11 August 2025 Accepted: 14 August 2025 Published: 26 August 2025
  • MSC : 34H05, 93C10, 93D09

  • This paper investigates robust cooperative control strategies for multi-robotic car systems operating under sensor and actuator faults. In autonomous driving environments, the degradation or failure of sensors and actuators significantly affects the performance of the system, posing risks to formation control, velocity tracking, and safety. To address these challenges, we propose a robust neural control framework that integrates a dynamic adjustment neural network (DANN) with fault-tolerant design. This architecture enables each robotic car to adaptively learn the system dynamics and adjust control signals in real time, even in the presence of component faults. A fault detection and isolation (FDI) mechanism is incorporated to identify malfunctioning elements, allowing the control system to dynamically compensate and maintain coordinated behavior. Lyapunov-based analysis is employed to guarantee stability and convergence of the system. In addition to theoretical development, a detailed simulation example involving a team of robotic cars under various sensor and actuator fault scenarios is presented to demonstrate the effectiveness and robustness of the proposed control strategy. The results confirm reliable tracking performance, strong resilience, and improved formation stability under realistic fault conditions.

    Citation: Muflih Alhazmi, Waqar Ul Hassan, Mohammed M. A. Almazah, Saadia Rehman, Azmat Ullah Khan Niazi, Somayya Komal, Nafisa A. Albasheir. Fault-tolerant coordination of robotic car teams via adaptive neural control and real-time fault isolation[J]. AIMS Mathematics, 2025, 10(8): 19554-19585. doi: 10.3934/math.2025873

    Related Papers:

  • This paper investigates robust cooperative control strategies for multi-robotic car systems operating under sensor and actuator faults. In autonomous driving environments, the degradation or failure of sensors and actuators significantly affects the performance of the system, posing risks to formation control, velocity tracking, and safety. To address these challenges, we propose a robust neural control framework that integrates a dynamic adjustment neural network (DANN) with fault-tolerant design. This architecture enables each robotic car to adaptively learn the system dynamics and adjust control signals in real time, even in the presence of component faults. A fault detection and isolation (FDI) mechanism is incorporated to identify malfunctioning elements, allowing the control system to dynamically compensate and maintain coordinated behavior. Lyapunov-based analysis is employed to guarantee stability and convergence of the system. In addition to theoretical development, a detailed simulation example involving a team of robotic cars under various sensor and actuator fault scenarios is presented to demonstrate the effectiveness and robustness of the proposed control strategy. The results confirm reliable tracking performance, strong resilience, and improved formation stability under realistic fault conditions.



    加载中


    [1] J. Lv, X. Ju, C. Wang, Neural network prescribed-time observer-based output-feedback control for uncertain pure-feedback nonlinear systems, Expert Syst. Appl., 264 (2025), 125813. https://doi.org/10.1016/j.eswa.2024.125813 doi: 10.1016/j.eswa.2024.125813
    [2] A. Tong, J. Zhang, L. Xie, Intelligent fault diagnosis of rolling bearing based on Gramian angular difference field and improved dual attention residual network, Sensors, 24 (2024), 2156. https://doi.org/10.3390/s24072156 doi: 10.3390/s24072156
    [3] Q. Wang, L. Chen, G. Xiao, P. Wang, Y. Gu, J. Lu, Elevator fault diagnosis based on digital twin and PINNs-e-RGCN, Sci. Rep., 14 (2024), 30713. https://doi.org/10.1038/s41598-024-78784-7 doi: 10.1038/s41598-024-78784-7
    [4] S. Wang, C. Zheng, T. Ma, T. Wang, S. Gao, Q. Dai, et al., Tooth backlash inspired comb-shaped single-electrode triboelectric nanogenerator for self-powered condition monitoring of gear transmission, Nano Energy, 123 (2024), 109429. https://doi.org/10.1016/j.nanoen.2024.109429 doi: 10.1016/j.nanoen.2024.109429
    [5] K. Deng, L. Yang, Y. Lu, S. Ma, Multitype chatter detection via multichannel internal and external signals in robotic milling, Measurement, 229 (2024), 114417. https://doi.org/10.1016/j.measurement.2024.114417 doi: 10.1016/j.measurement.2024.114417
    [6] M. F. Li, Y. Liu, T. Wang, F. Chu, Z. Peng, Adaptive synchronous demodulation transform with application to analyzing multicomponent signals for machinery fault diagnostics, Mech. Syst. Signal Process., 191 (2023), 110208. https://doi.org/10.1016/j.ymssp.2023.110208 doi: 10.1016/j.ymssp.2023.110208
    [7] Y. Yao, F. Shu, X. Cheng, H. Liu, P. Miao, L. Wu, Automotive radar optimization design in a spectrally crowded V2I communication environment, IEEE Trans. Intell. Transp. Syst., 24 (2023), 8253–8263. https://doi.org/10.1109/TITS.2023.3264507 doi: 10.1109/TITS.2023.3264507
    [8] X. Xu, B. Li, Semi-global stabilization of parabolic PDE–ODE systems with input saturation, Automatica, 171 (2025), 111931. https://doi.org/10.1016/j.automatica.2024.111931 doi: 10.1016/j.automatica.2024.111931
    [9] M. Li, T. Wang, F. Chu, Q. Han, Z. Qin, M. J. Zuo, Scaling-basis chirplet transform, IEEE Trans. Ind. Electron., 68 (2020), 8777–8788. https://doi.org/10.1109/TIE.2020.3013537 doi: 10.1109/TIE.2020.3013537
    [10] Y. H. Lan, J. Y. Zhao, Improving track performance by combining Padé-approximation-based preview repetitive control and equivalent-input-disturbance, J. Electr. Eng. Technol., 19 (2024), 3781–3794. https://doi.org/10.1007/s42835-024-01830-x doi: 10.1007/s42835-024-01830-x
    [11] J. Hang, G. Qiu, M. Hao, S. Ding, Improved fault diagnosis method for permanent magnet synchronous machine system based on lightweight multi-source information data layer fusion, IEEE Trans. Power Electron., 39 (2024), 13808–13817. https://doi.org/10.1109/TPEL.2024.3432163 doi: 10.1109/TPEL.2024.3432163
    [12] W. He, J. Hang, S. Ding, L. Sun, W. Hua, Robust diagnosis of partial demagnetization fault in PMSMs using radial air-gap flux density under complex working conditions, IEEE Trans. Ind. Electron., 71 (2024), 12001–12010. https://doi.org/10.1109/TIE.2024.3349520 doi: 10.1109/TIE.2024.3349520
    [13] T. Wu, H. Yang, P. Wang, C. Zhang, M. Zhang, Data-driven fatigue reliability evaluation of offshore wind turbines under floating ice loading, J. Struct. Eng., 150 (2024), 05024004. https://doi.org/10.1061/JSENDH.STENG-13476 doi: 10.1061/JSENDH.STENG-13476
    [14] Z. Zeng, C. Zhu, S. M. Goetz, Fault-tolerant multiparallel three-phase two-level converters with adaptive hardware reconfiguration, IEEE Trans. Power Electron., 39 (2024), 3925–3930. https://doi.org/10.1109/TPEL.2024.3350186 doi: 10.1109/TPEL.2024.3350186
    [15] H. Xu, X. Cui, Y. Liu, Y. Xu, X. Ling, Y. Li, Effect of fastening system failure on the micromechanical properties of railway ballast bed, KSCE J. Civ. Eng., 29 (2025), 100233. https://doi.org/10.1016/j.kscej.2025.100233 doi: 10.1016/j.kscej.2025.100233
    [16] Z. Zhang, G. Chen, W. Chen, R. Jia, G. Chen, L. Zhang, A joint learning of force feedback of robotic manipulation and textual cues for granular materials classification, IEEE Robot. Autom. Lett., 10 (2025), 7166–7173. https://doi.org/10.1109/LRA.2025.3575322 doi: 10.1109/LRA.2025.3575322
    [17] B. Zhu, R. Tang, J. Zhao, P. Zhang, W. Li, X. Cao, et al., Critical scenarios adversarial generation method for intelligent vehicles testing based on hierarchical reinforcement architecture, Accid. Anal. Prev., 215 (2025), 108013. https://doi.org/10.1016/j.aap.2025.108013 doi: 10.1016/j.aap.2025.108013
    [18] B. Zhu, X. Cao, P. Zhang, J. Zhao, J. Han, R. Tang, High-fidelity ultrasonic radar in-the-loop accelerated test for automatic parking systems, IEEE T. Intell. Transp. Syst., 2025, 1–13. https://doi.org/10.1109/TITS.2025.3574505
    [19] J. Tian, Y. Zhou, L. Yin, S. A. Alqahtani, M. Tang, S. Lu, et al., Control structures and algorithms for force feedback bilateral teleoperation systems: A comprehensive review, Comput. Model. Eng. Sci., 142 (2025), 973–1019. https://doi.org/10.32604/cmes.2024.057261 doi: 10.32604/cmes.2024.057261
    [20] J. Wang, Y. Song, T. He, A novel adaptive monitoring framework for detecting the abnormal states of aero-engines with maneuvering flight data, Reliab. Eng. Syst. Safe., 258 (2025), 110910. https://doi.org/10.1016/j.ress.2025.110910 doi: 10.1016/j.ress.2025.110910
    [21] Z. Zhou, Y. Wang, G. Zhou, K. Nam, Z. Ji, C. Yin, A twisted Gaussian risk model considering target vehicle longitudinal-lateral motion states for host vehicle trajectory planning, IEEE Trans. Intell. Transp. Syst., 24 (2023), 13685–13697. https://doi.org/10.1109/TITS.2023.3298110 doi: 10.1109/TITS.2023.3298110
    [22] J. Guo, Y. Li, B. Huang, L. Ding, H. Gao, M. Zhong, An online optimization escape entrapment strategy for planetary rovers based on Bayesian optimization, J. Field Robot., 41 (2024), 2518–2529. https://doi.org/10.1002/rob.22361 doi: 10.1002/rob.22361
    [23] T. Li, H. Shi, X. Bai, N. Li, K. Zhang, Rolling bearing performance assessment with degradation twin modeling considering interdependent fault evolution, Mech. Syst. Signal Process., 224 (2025), 112194. https://doi.org/10.1016/j.ymssp.2024.112194 doi: 10.1016/j.ymssp.2024.112194
    [24] X. Zhao, T. Wang, Y. Li, B. Zhang, K. Liu, D. Liu, et al., Target-driven visual navigation by using causal intervention, IEEE Trans. Intell. Veh., 9 (2024), 1294–1304. https://doi.org/10.1109/TIV.2023.3288810 doi: 10.1109/TIV.2023.3288810
    [25] L. Li, A. Cherouat, H. Snoussi, T. Wang, Grasping with occlusion-aware ally method in complex scenes, IEEE Trans. Autom. Sci. Eng., 22 (2024), 5944–5954. https://doi.org/10.1109/TASE.2024.3434610 doi: 10.1109/TASE.2024.3434610
    [26] C. Zhang, J. Qiao, S. Wang, R. Chen, H. Dui, Y. Zhang, et al., Importance measures based on system performance loss for multi-state phased-mission systems, Reliab. Eng. Syst. Saf., 256 (2025), 110776. https://doi.org/10.1016/j.ress.2024.110776 doi: 10.1016/j.ress.2024.110776
    [27] G. Du, H. Zhang, H. Yu, P. Hou, J. He, S. Cao, L. Ma, Study on automatic tracking system of microwave deicing device for railway contact wire, IEEE Trans. Instrum. Meas., 73 (2024), 1–11. https://doi.org/10.1109/TIM.2024.3446638 doi: 10.1109/TIM.2024.3446638
    [28] J. Wang, Y. Wu, C. L. P. Chen, Z. Liu, W. Wu, Adaptive PI event-triggered control for MIMO nonlinear systems with input delay, Inform. Sci., 677 (2024), 120817. https://doi.org/10.1016/j.ins.2024.120817 doi: 10.1016/j.ins.2024.120817
    [29] F. Ding, K. Zhu, J. Liu, C. Peng, Y. Wang, J. Lu, Adaptive memory event triggered output feedback finite-time lane keeping control for autonomous heavy truck with roll prevention, IEEE Trans. Fuzzy Syst., 32 (2024), 6607–6621. https://doi.org/10.1109/TFUZZ.2024.3454344 doi: 10.1109/TFUZZ.2024.3454344
    [30] X. Zhang, Y. Liu, X. Chen, Z. Li, C. Y. Su, Adaptive pseudoinverse control for constrained hysteretic nonlinear systems and its application on dielectric elastomer actuator, IEEE/ASME Trans. Mechatron., 28 (2023), 2142–2154. https://doi.org/10.1109/TMECH.2022.3231263 doi: 10.1109/TMECH.2022.3231263
    [31] X. Chen, J. Cui, Y. Liu, X. Zhang, J. Sun, R. Ai, et al., Joint scene flow estimation and moving object segmentation on rotational LiDAR data, IEEE Trans. Intell. Transp. Syst., 25 (2024), 17733–17743. https://doi.org/10.1109/TITS.2024.3432755 doi: 10.1109/TITS.2024.3432755
    [32] W. Jiang, B. Zheng, D. Sheng, X. Li, A compensation approach for magnetic encoder error based on improved deep belief network algorithm, Sens. Actuators A Phys., 366 (2024), 115003. https://doi.org/10.1016/j.sna.2023.115003 doi: 10.1016/j.sna.2023.115003
    [33] J. Xiao, Y. Ren, J. Du, Y. Zhao, S. Kumari, M. J. Alenazi, et al., CALRA: Practical conditional anonymous and leakage-resilient authentication scheme for vehicular crowdsensing communication, IEEE Trans. Intell. Transp. Syst., 26 (2025), 1273–1285. https://doi.org/10.1109/TITS.2024.3488741 doi: 10.1109/TITS.2024.3488741
    [34] J. Wu, Y. Wang, C. Yin, Curvilinear multilane merging and platooning with bounded control in curved road coordinates, IEEE Trans. Veh. Technol., 71 (2022), 1237–1252. https://doi.org/10.1109/TVT.2021.3131751 doi: 10.1109/TVT.2021.3131751
    [35] J. Joshi, A. K. Singh, Performance analysis of routing protocols for vehicular networks, Int. J. Veh. Inform. Commun. Syst., 9 (2024), 60–80. https://doi.org/10.1504/IJVICS.2024.136276 doi: 10.1504/IJVICS.2024.136276
    [36] S. Zhang, Feature-aware task offloading and scheduling mechanism in vehicle edge computing environment, Int. J. Veh. Inform. Commun. Syst., 9 (2024), 415–433. https://doi.org/10.1504/IJVICS.2024.142101 doi: 10.1504/IJVICS.2024.142101
    [37] J. Chen, Y. Wang, Y. Cui, H. Wang, K. Polat, F. Alenezi, EEG-based multi-band functional connectivity using corrected amplitude envelope correlation for identifying unfavorable driving states, Comput. Methods Biomech. Biomed. Eng., 2025. https://doi.org/10.1080/10255842.2025.2488502
    [38] H. Wang, Y. F. Li, T. Men, L. Li, Physically interpretable wavelet-guided networks with dynamic frequency decomposition for machine intelligence fault prediction, IEEE Trans. Syst. Man Cybern. Syst., 54 (2024), 4863–4875. https://doi.org/10.1109/TSMC.2024.3389068 doi: 10.1109/TSMC.2024.3389068
    [39] F. Wang, K. Chen, S. Zhen, X. Chen, H. Zheng, Z. Wang, Prescribed performance adaptive robust control for robotic manipulators with fuzzy uncertainty, IEEE Trans. Fuzzy Syst., 32 (2024), 1318–1330. https://doi.org/10.1109/TFUZZ.2023.3323090 doi: 10.1109/TFUZZ.2023.3323090
    [40] H. Qi, L. Ding, M. Zheng, L. Huang, H. Gao, G. Liu, et al., Variable wheelbase control of wheeled mobile robots with worm-inspired creeping gait strategy, IEEE Trans. Robot., 40 (2024), 3271–3289. https://doi.org/10.1109/TRO.2024.3400947 doi: 10.1109/TRO.2024.3400947
    [41] G. Lu, Q. Lin, D. Zheng, P. Zhang, Online degradation fault prognosis for DC-link capacitors in multistring-connected photovoltaic boost converters subject to cable uncertainties, IEEE J. Emerg. Sel. Topics Power Electron., 13 (2025), 1107–1117. https://doi.org/10.1109/JESTPE.2024.3502255 doi: 10.1109/JESTPE.2024.3502255
    [42] D. He, Y. Lin, Z. Dai, S. X. Yang, Neurodynamics-based visual servo predictive control for improving smooth movement of logistics omnidirectional robots, IEEE Trans. Ind. Electron., 2025, 1–10. https://doi.org/10.1109/TIE.2025.3585028
    [43] Y. Li, Y. Jiang, J. Lu, C. Tan, Improved active disturbance rejection control for electro-hydrostatic actuators via actor-critic reinforcement learning, Eng. Appl. Artif. Intell., 158 (2025), 111485. https://doi.org/10.1016/j.engappai.2025.111485 doi: 10.1016/j.engappai.2025.111485
    [44] Z. Wang, D. Gao, Y. Lu, K. Deng, Z. Yuan, M. Huang, et al., A mutual cross-attention fusion network for surface roughness prediction in robotic machining process using internal and external signals, J. Manuf. Syst., 82 (2025), 284–300. https://doi.org/10.1016/j.jmsy.2025.06.018 doi: 10.1016/j.jmsy.2025.06.018
    [45] W. Ji, X. Lin, Y. Sun, G. Lin, A. Vulevic, Intelligent fault-tolerant control for high-speed maglev transportation based on error-driven adaptive fuzzy online compensator, IEEE Trans. Intell. Transp. Syst., 2025, 1–10. https://doi.org/10.1109/TITS.2025.3549624
    [46] H. Liu, S. Zhen, X. Liu, H. Zheng, L. Gao, Y. H. Chen, Robust approximate constraint following control design for collaborative robots system and experimental validation, Robotica, 42 (2024), 3957–3975. https://doi.org/10.1017/S0263574724001760 doi: 10.1017/S0263574724001760
    [47] C. Guo, J. Hu, Time base generator-based practical predefined-time stabilization of high-order systems with unknown disturbance, IEEE Trans. Circuits Syst. II, 70 (2023), 2670–2674. https://doi.org/10.1109/TCSII.2023.3242856 doi: 10.1109/TCSII.2023.3242856
    [48] B. Xu, X. Wang, J. Zhang, Y. Guo, A. A. Razzaqi, A novel adaptive filtering for cooperative localization under compass failure and non-gaussian noise, IEEE Trans. Veh. Technol., 71 (2022), 3737–3749. https://doi.org/10.1109/TVT.2022.3145095 doi: 10.1109/TVT.2022.3145095
    [49] P. Wang, M. Gao, J. Li, A. Zhang, Dynamic adjustment neural network-based cooperative control for vehicle platoons with state constraints, Int. J. Appl. Math. Comput. Sci., 34 (2024), 211–224. https://doi.org/10.61822/amcs-2024-0015 doi: 10.61822/amcs-2024-0015
    [50] H. Ma, Q. Zhou, H. Ren, Z. Wang, Distributed estimator-based fuzzy containment control for nonlinear multiagent systems with deferred constraints, IEEE Trans. Fuzzy Syst., 33 (2025), 2074–2083. https://doi.org/10.1109/TFUZZ.2025.3550864 doi: 10.1109/TFUZZ.2025.3550864
    [51] H. Ren, L. Cao, H. Ma, H. Li, Dynamic event-triggered-based fuzzy adaptive pinning control for multiagent systems with output saturation, IEEE Trans. Fuzzy Syst., 33 (2025), 1277–1286. https://doi.org/10.1109/TFUZZ.2024.3519186 doi: 10.1109/TFUZZ.2024.3519186
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(498) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog