This article investigated the fuzzy adaptive fault-tolerant resilient formation control issue for uncertain nonlinear multi-agent systems (MASs) with immeasurable states and under denial-of-service (DoS) attacks. Fuzzy logic systems were utilized to model unknown agents, and a fuzzy state estimator was formulated to reconstruct the agents' unknown states. A distributed resilient formation estimator was proposed to obtain the unknown leader information estimation and its high-order derivatives under DoS attacks. Based on the designed fuzzy state and resilient formation estimators, a fault-tolerant fuzzy output-feedback adaptive resilient formation control scheme was developed via the backstepping control methodology. It was proven that the developed fault-tolerant fuzzy resilient formation control scheme can guarantee that the controlled nonlinear MASs were stable and formation tracking errors converged even under unknown states, actuator faults, and DoS attacks. Finally, the proposed fuzzy adaptive fault-tolerant resilient formation control method was applied to marine surface vehicles; the simulation results and comparisons showed the effectiveness of the presented control methodology.
Citation: Naveed Iqbal, Fathia Moh. Al Samman, Rohma Arooj, Abdulqadir Ismail Abdullah, Mohammed M. A. Almazah, A. Y. Al-Rezami, Azmat Ullah Khan Niazi. Adaptive fuzzy fault-tolerant formation control for nonlinear multi-agent systems under cyber-physical threats[J]. AIMS Mathematics, 2025, 10(8): 19586-19616. doi: 10.3934/math.2025874
This article investigated the fuzzy adaptive fault-tolerant resilient formation control issue for uncertain nonlinear multi-agent systems (MASs) with immeasurable states and under denial-of-service (DoS) attacks. Fuzzy logic systems were utilized to model unknown agents, and a fuzzy state estimator was formulated to reconstruct the agents' unknown states. A distributed resilient formation estimator was proposed to obtain the unknown leader information estimation and its high-order derivatives under DoS attacks. Based on the designed fuzzy state and resilient formation estimators, a fault-tolerant fuzzy output-feedback adaptive resilient formation control scheme was developed via the backstepping control methodology. It was proven that the developed fault-tolerant fuzzy resilient formation control scheme can guarantee that the controlled nonlinear MASs were stable and formation tracking errors converged even under unknown states, actuator faults, and DoS attacks. Finally, the proposed fuzzy adaptive fault-tolerant resilient formation control method was applied to marine surface vehicles; the simulation results and comparisons showed the effectiveness of the presented control methodology.
| [1] |
J. Lv, X. Ju, C. Wang, Neural network prescribed-time observer-based output-feedback control for uncertain pure-feedback nonlinear systems, Expert Syst. Appl., 264 (2025), 125813. https://doi.org/10.1016/j.eswa.2024.125813 doi: 10.1016/j.eswa.2024.125813
|
| [2] |
P. Gong, Q. G. Wang, Robust adaptive distributed optimization for heterogeneous unknown second-order nonlinear multiagent systems, Sci. China Inf. Sci., 68 (2025), 149202. https://doi.org/10.1007/s11432-024-4314-8 doi: 10.1007/s11432-024-4314-8
|
| [3] | F. Han, P. Yang, H. Du, X. Li, Accuth+: Accelerometer-Based Anti-Spoofing Voice Authentication on Wrist-Worn Wearables, IEEE Trans. Mobile Comput., 23 (2024), 5571–5588. https://doi.org/10.1109/TMC.2023.3314837 |
| [4] |
Y. Liu, W. Li, X. Dong, Z. Ren, Resilient formation tracking for networked swarm systems under malicious data deception attacks, Int. J. Robust Nonlinear Control, 35 (2025), 2043–2052. https://doi.org/10.1002/rnc.7777 doi: 10.1002/rnc.7777
|
| [5] |
W. Zhou, C. Xia, T. Wang, X. Liang, W. Lin, X. Li, et al., HIDIM: A novel framework of network intrusion detection for hierarchical dependency and class imbalance, Comput. Secur., 148 (2025), 104155. https://doi.org/10.1016/j.cose.2024.104155 doi: 10.1016/j.cose.2024.104155
|
| [6] |
D. Zhang, Z. Ye, G. Feng, H. Li, Intelligent event-based fuzzy dynamic positioning control of nonlinear unmanned marine vehicles under DoS attack, IEEE Trans. Cybern., 52 (2021), 13486–13499. https://doi.org/10.1109/TCYB.2021.3128170 doi: 10.1109/TCYB.2021.3128170
|
| [7] |
D. Tang, R. Dai, C. Zuo, J. Chen, K. Li, Z. Qin, A low-rate DoS attack mitigation scheme based on port and traffic state in SDN, IEEE Trans. Comput., 74 (2025), 1758–1770. https://doi.org/10.1109/TC.2025.3541143 doi: 10.1109/TC.2025.3541143
|
| [8] | Y. Liu, X. Dong, E. Zio, Y. Cui, Active resilient secure control for heterogeneous swarm systems under malicious cyber-attacks, IEEE Trans. Syst. Man Cybern. Syst., 2025. https://doi.org/10.1109/TSMC.2025.3580940 |
| [9] |
Y. Liu, X. Li, Y. Zhang, L. Ge, Y. Guan, Z. Zhang, Ultra-large scale stitchless AFM: Advancing nanoscale characterization and manipulation with zero stitching error and high throughput, Small, 20 (2024), 2470010. https://doi.org/10.1002/smll.202470010 doi: 10.1002/smll.202470010
|
| [10] |
W. Wu, Y. Li, S. Tong, Neural network output-feedback consensus fault-tolerant control for nonlinear multi-agent systems with intermittent actuator faults, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 4728–474. https://doi.org/10.1109/TNNLS.2021.3117364 doi: 10.1109/TNNLS.2021.3117364
|
| [11] | H. Li, W. Wu, S. Tong, Adaptive fuzzy output-feedback secure consensus fault-tolerant control of nonlinear multi-agent systems under DoS attacks, Int. J. Fuzzy Syst., 2024. https://doi.org/10.1007/s40815-024-01898-7 |
| [12] |
F. Ding, K. Zhu, J. Liu, C. Peng, Y. Wang, J. Lu, Adaptive memory event-triggered output feedback finite-time lane-keeping control for autonomous heavy truck with roll prevention, IEEE Trans. Fuzzy Syst., 32 (2024), 6607–6621. https://doi.org/10.1109/TFUZZ.2024.3454344 doi: 10.1109/TFUZZ.2024.3454344
|
| [13] |
J. Shi, C. Liu, J. Liu, Hypergraph-based model for modeling multi-agent Q-learning dynamics in public goods games, IEEE Trans. Netw. Sci. Eng., 11 (2024), 6169–6179. https://doi.org/10.1109/TNSE.2024.3473941 doi: 10.1109/TNSE.2024.3473941
|
| [14] |
X. Zhang, Y. Liu, X. Chen, Z. Li, C. Y. Su, Adaptive pseudoinverse control for constrained hysteretic nonlinear systems and its application on dielectric elastomer actuator, IEEE/ASME Trans. Mechatron., 28 (2023), 2142–2154. https://doi.org/10.1109/TMECH.2022.3231263 doi: 10.1109/TMECH.2022.3231263
|
| [15] |
X. Li, Z. Lu, M. Yuan, W. Liu, F. Wang, Y. Yu, et al., Tradeoff of code estimation error rate and terminal gain in SCER attack, IEEE Trans. Instrum. Meas., 73 (2024), 1–12. https://doi.org/10.1109/TIM.2024.3406807 doi: 10.1109/TIM.2024.3406807
|
| [16] | Z. Zhou, Y. Wang, X. Liu, Z. Li, M. Wu, G. Zhou, Hybrid of neural network and physics-based estimator for vehicle longitudinal dynamics modeling using limited driving data, IEEE Trans. Intell. Transp. Syst., 2025. https://doi.org/10.1109/TITS.2025.3585346 |
| [17] |
F. Han, H. Jin, Impulsive control of nonlinear multi-agent systems: A hybrid fuzzy adaptive and event-triggered strategy, IEEE Trans. Fuzzy Syst., 33 (2025), 1889–1898. https://doi.org/10.1109/TFUZZ.2025.3545740 doi: 10.1109/TFUZZ.2025.3545740
|
| [18] |
R. Nie, W. Du, Z. Li, S. He, Improved finite-time sliding mode control for multi-agent systems under fuzzy topologies, IEEE Trans. Autom. Sci. Eng., 22 (2025), 12147–12159. https://doi.org/10.1109/TASE.2025.3539341 doi: 10.1109/TASE.2025.3539341
|
| [19] | J. Chen, M. Li, M. Marcantoni, B. Jayawardhana, Y. Wang, Range-only distributed safety-critical formation control based on contracting bearing estimators and control barrier functions, IEEE Internet Things J., 2025. https://doi.org/10.1109/JIOT.2025.3590774 |
| [20] |
M. Yue, H. Yan, R. Han, Z. Wu, A DDoS attack detection method based on IQR and DFFCNN in SDN, J. Netw. Comput. Appl., 240 (2025), 104203. https://doi.org/10.1016/j.jnca.2025.104203 doi: 10.1016/j.jnca.2025.104203
|
| [21] |
M. Mousavian, H. Atrianfar, Resilient adaptive event-triggered containment control of nonlinear multi-agent system under concurrent DoS attacks and disturbances, Int. J. Syst. Sci., 56 (2025), 40–59. https://doi.org/10.1080/00207721.2024.2378366 doi: 10.1080/00207721.2024.2378366
|
| [22] |
W. Su, C. Mu, S. Zhu, B. Niu, C. Sun, Event-triggered leader-follower bipartite consensus control for nonlinear multi-agent systems under DoS attacks, Sci. China Inf. Sci., 68 (2025), 132206. https://doi.org/10.1007/s11432-024-4148-7 doi: 10.1007/s11432-024-4148-7
|
| [23] |
X. Ju, Y. Jiang, L. Jing, P. Liu, Quantized predefined-time control for heavy-lift launch vehicles under actuator faults and rate gyro malfunctions, ISA Trans., 138 (2023), 133–150. https://doi.org/10.1016/j.isatra.2023.02.022 doi: 10.1016/j.isatra.2023.02.022
|
| [24] |
F. Wang, K. Chen, S. Zhen, X. Chen, H. Zheng, Z. Wang, Prescribed performance adaptive robust control for robotic manipulators with fuzzy uncertainty, IEEE Trans. Fuzzy Syst., 32 (2024), 1318–1330. https://doi.org/10.1109/TFUZZ.2023.3323090 doi: 10.1109/TFUZZ.2023.3323090
|
| [25] |
H. Xiong, G. Chen, H. Ren, H. Li, R. Lu, Event-based model-free adaptive consensus control for multi-agent systems under intermittent attacks, Int. J. Syst. Sci., 55 (2024), 2062–2076. https://doi.org/10.1080/00207721.2024.2329739 doi: 10.1080/00207721.2024.2329739
|
| [26] |
Y. Li, Y. Jiang, J. Lu, C. Tan, Improved active disturbance rejection control for electro-hydrostatic actuators via actor-critic reinforcement learning, Eng. Appl. Artif. Intell., 158 (2025), 111485. https://doi.org/10.1016/j.engappai.2025.111485 doi: 10.1016/j.engappai.2025.111485
|
| [27] |
T. Ru, C. Cai, J. H. Park, Secured bipartite consensus control for nonlinear multi-agent systems against hybrid attacks: A component-based WTOD protocol, IEEE Trans. Autom. Sci. Eng., 22 (2025), 11680–11692. https://doi.org/10.1109/TASE.2025.3534029 doi: 10.1109/TASE.2025.3534029
|
| [28] | Y. Xu, H. Xu, X. Chen, H. Zhang, B. Chen, Z. Han, Blockchain-based AR offloading in UAV-enabled MEC networks: A trade-off between energy consumption and rendering latency, IEEE Trans. Veh. Technol., 2025. https://doi.org/10.1109/TVT.2025.3581015 |
| [29] |
Q. Meng, Q. Ma, Y. Shi, Adaptive fixed-time stabilization for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control, 68 (2023), 6929–6936. https://doi.org/10.1109/TAC.2023.3244151 doi: 10.1109/TAC.2023.3244151
|
| [30] |
L. Wen, B. Niu, X. Zhao, G. Zong, D. Wang, W. Wang, et al., Composite-observer-based adaptive consensus tracking control for nonlinear MASs with unknown control directions against deception attacks, IEEE Trans. Cybern., 55 (2024), 343–354. https://doi.org/10.1109/TCYB.2024.3486934 doi: 10.1109/TCYB.2024.3486934
|
| [31] |
H. Zhu, J. Liu, S. Zhang, Z. Zhang, F. Qu, HDWM-based consensus control for multi-agent systems under communication delays and DoS attacks, Int. J. Control Autom. Syst., 21 (2023), 3896–3908. https://doi.org/10.1007/s12555-022-0609-3 doi: 10.1007/s12555-022-0609-3
|
| [32] |
L. Yu, Z. Wang, Y. Liu, C. Xue, Sampled-data nonfragile bipartite tracking consensus for nonlinear multi-agent systems: Dealing with denial-of-service attacks, IEEE Trans. Syst. Man Cybern. Syst., 55 (2024), 1202–1214. https://doi.org/10.1109/TSMC.2024.3497590 doi: 10.1109/TSMC.2024.3497590
|
| [33] |
Y. Cao, Z. Zhang, Enhanced contour tracking: A time-varying internal model principle-based approach, IEEE/ASME Trans. Mechatron., 30 (2025), 3188–3196. https://doi.org/10.1109/TMECH.2025.3572743 doi: 10.1109/TMECH.2025.3572743
|
| [34] |
G. B. Hong, S. H. Kim, Resilient adaptive event-triggered control of nonlinear DC-microgrids under DoS attacks: Local stabilization approach, IEEE Trans. Autom. Sci. Eng., 22 (2025), 11356–11368. https://doi.org/10.1109/TASE.2025.3532087 doi: 10.1109/TASE.2025.3532087
|
| [35] |
W. Wang, C. Li, A. Luo, H. Xiao, Stability analysis of linear systems with a periodical time-varying delay based on an improved non-continuous piecewise Lyapunov functional, AIMS Mathematics, 10 (2025), 9073–9093. https://doi.org/10.3934/math.2025418 doi: 10.3934/math.2025418
|
| [36] |
P. Gong, Q. G. Wang, C. K. Ahn, Finite-time distributed optimization in unbalanced multiagent networks: Fractional-order dynamics, disturbance rejection, and chatter avoidance, IEEE Trans. Autom. Sci. Eng., 22 (2024), 6691–6701. https://doi.org/10.1109/TASE.2024.3452472 doi: 10.1109/TASE.2024.3452472
|
| [37] |
B. Abdelhamid, C. Mohamed, Robust fuzzy adaptive fault-tolerant control for a class of second-order nonlinear systems, Int. J. Adapt. Control Signal Process., 39 (2025), 15–30. https://doi.org/10.1002/acs.3916 doi: 10.1002/acs.3916
|
| [38] |
A. Bounemeur, M. Chemachema, General fuzzy adaptive fault-tolerant control based on Nussbaum-type function with additive and multiplicative sensor and state-dependent actuator faults, Fuzzy Sets Syst., 468 (2023), 108616. https://doi.org/10.1016/j.fss.2023.108616 doi: 10.1016/j.fss.2023.108616
|
| [39] |
C. Deng, C. Wen, Distributed resilient observer-based fault-tolerant control for heterogeneous multi-agent systems under actuator faults and DoS attacks, IEEE Trans. Control Netw. Syst., 7 (2020), 1308–1318. https://doi.org/10.1109/TCNS.2020.2972601 doi: 10.1109/TCNS.2020.2972601
|
| [40] |
W. Li, H. Zhang, Y. Cai, Y. Wang, Fully distributed formation control of general linear multi-agent systems using a novel mixed self-and event-triggered strategy, IEEE Trans. Syst. Man Cybern. Syst., 52 (2021), 5736–5745. https://doi.org/10.1109/TSMC.2021.3129469 doi: 10.1109/TSMC.2021.3129469
|
| [41] |
C. Chen, F. L. Lewis, S. Xie, H. Modares, Z. Liu, S. Zuo, et al., Resilient adaptive and $H_\infty$ controls of multi-agent systems under sensor and actuator faults, Automatica, 102 (2019), 19–26. https://doi.org/10.1016/j.automatica.2018.12.024 doi: 10.1016/j.automatica.2018.12.024
|
| [42] |
J. Hu, B. Chen, B. K. Ghosh, Formation–circumnavigation switching control of multiple ODIN systems via finite-time intermittent control strategies, IEEE Trans. Control Netw. Syst., 11 (2024), 1986–1997. https://doi.org/10.1109/TCNS.2024.3371597 doi: 10.1109/TCNS.2024.3371597
|
| [43] |
H. Zhou, S. Tong, Fuzzy adaptive resilient formation control for nonlinear multi-agent systems subject to DoS attacks, IEEE Trans. Fuzzy Syst., 32 (2023), 1446–1454. https://doi.org/10.1109/TFUZZ.2023.3327140 doi: 10.1109/TFUZZ.2023.3327140
|
| [44] |
H. Shen, W. Zhao, J. Cao, J. H. Park, J. Wang, Predefined-time event-triggered tracking control for nonlinear servo systems: A fuzzy weight-based reinforcement learning scheme, IEEE Trans. Fuzzy Syst., 32 (2024), 4557–4569. https://doi.org/10.1109/TFUZZ.2024.3403917 doi: 10.1109/TFUZZ.2024.3403917
|
| [45] |
J. Wang, J. Wu, H. Shen, J. Cao, L. Rutkowski, Fuzzy $H_\infty$ control of discrete-time nonlinear Markov jump systems via a novel hybrid reinforcement Q-learning method, IEEE Trans. Cybern., 53 (2022), 7380–7391. https://doi.org/10.1109/TCYB.2022.3220537 doi: 10.1109/TCYB.2022.3220537
|