Research article Special Issues

Chemo-immunotherapy for optimal control of Tumor using Hilfer fractional derivative

  • Received: 01 June 2025 Revised: 25 July 2025 Accepted: 06 August 2025 Published: 26 August 2025
  • MSC : 26A33, 49K05, 92C50

  • This research investigated an optimal control problem formulated using a Hilfer fractional-order differential model to describe the dynamics between tumor cells and the immune system during immuno-chemotherapy. The model emphasized the activation timing of effector cells and their capacity to generate a potent immune response against the tumor. The primary objective was to minimize the costs associated with immuno-chemotherapy while simultaneously reducing the tumor cell population through optimal control strategies. By solving both the state and adjoint equations, the optimal control problem was addressed numerically. Simulation results demonstrated that the proposed immuno-chemotherapy protocol significantly reduced the tumor burden.

    Citation: K. Ramalakshmi, B. Sundara Vadivoo, Dilber Uzun Ozsahin, Hijaz Ahmad, Taha Radwan. Chemo-immunotherapy for optimal control of Tumor using Hilfer fractional derivative[J]. AIMS Mathematics, 2025, 10(8): 19512-19539. doi: 10.3934/math.2025871

    Related Papers:

  • This research investigated an optimal control problem formulated using a Hilfer fractional-order differential model to describe the dynamics between tumor cells and the immune system during immuno-chemotherapy. The model emphasized the activation timing of effector cells and their capacity to generate a potent immune response against the tumor. The primary objective was to minimize the costs associated with immuno-chemotherapy while simultaneously reducing the tumor cell population through optimal control strategies. By solving both the state and adjoint equations, the optimal control problem was addressed numerically. Simulation results demonstrated that the proposed immuno-chemotherapy protocol significantly reduced the tumor burden.



    加载中


    [1] G. K. Antony, A. Z. Dudek, Interleukin 2 in cancer therapy, Curr. Med. Chem., 17 (2010), 3297–3302. http://dx.doi/10.2174/092986710793176410 doi: 10.2174/092986710793176410
    [2] S. Banerje, Immunotherapy with interleukin-2: A study based on mathematical modeling, Int. J. Ap. Mat. Com.-Pol., 18 (2008), 389–398. http://dx.doi/10.2478/v10006-008-0035-6 doi: 10.2478/v10006-008-0035-6
    [3] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, B. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5
    [4] L. G. D. Pillis, K. R. Fister, W. Gu, T. Head, K. Maples, T. Neal, et al., Optimal control of mixed immunotherapy and chemotherapy of tumors, J. Biol. Syst., 16 (2008), 51–80. https://doi.org/10.1142/S0218339008002435 doi: 10.1142/S0218339008002435
    [5] P. Khalili, R. Vatankhah, Optimal control design for drug delivery of immunotherapy in chemoimmunotherapy treatment, Comput. Meth. Prog. Bio., 229 (2023), 107248. https://doi.org/10.1016/j.cmpb.2022.107248 doi: 10.1016/j.cmpb.2022.107248
    [6] K. Ramalakshmi, B. Sundaravadivoo, Necessary conditions for $\Psi$-Hilfer fractional optimal control problems and $\Psi$-Hilfer two-step Lagrange interpolation polynomial, Int. J. Dynam. Control, 12 (2024), 42–55. https://doi.org/10.1007/s40435-023-01342-y doi: 10.1007/s40435-023-01342-y
    [7] D. Baleanu, A. Jajarmi, S. S. Sajjadi, D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127. https://doi.org/10.1063/1.5096159 doi: 10.1063/1.5096159
    [8] K. J. Mahasa, R. Ouifki, A. Eladdadi, L. Pillis, Mathematical model of tumor-immune surveillance, J. Theor. Biol., 404 (2016), 312–330. https://doi.org/10.1016/j.jtbi.2016.06.012 doi: 10.1016/j.jtbi.2016.06.012
    [9] D. Kirschner, J. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235–252. https://doi.org/10.1007/s002850050127 doi: 10.1007/s002850050127
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies: Elsevier, 2006. http://dx.doi/10.1016/S0304-0208(06)80001-0
    [11] O. P. Agrawal, General formulation for the numerical solution of optimal control problems, Int. J. Control, 50 (1989), 627–638. https://doi.org/10.1080/00207178908953385 doi: 10.1080/00207178908953385
    [12] F. A. Rihan, D. H. Abdelrahman, F. A. Maskari, F. Ibrahim, M. A. Abdeen, Delay differential model for tumour-immune response with chemoimmunotherapy and optimal control, Comput. Math. Method. M., 2014 (2014), 982978. https://doi.org/10.1155/2014/982978 doi: 10.1155/2014/982978
    [13] K. Shahzadi, A. Tariq, U. Ali, M. A. Khan, An efficient analytical solution for fractional order cancer model; Laplace transformation, Global J. Sci., 1 (2024), 1–11. https://doi.org/10.48165/gjs.2024.1201 doi: 10.48165/gjs.2024.1201
    [14] H. Schattler, U. Ledzewicz, Optimal control for mathematical models of cancer therapies, New York: Springer, 2015. https://doi.org/10.1007/978-1-4939-2972-6
    [15] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [16] M. M. Raja, V. Vijayakumar, K. C. Veluvolu, Improved order in Hilfer fractional differential systems: Solvability and optimal control problem for hemivariational inequalities, Chaos Soliton. Fract., 188 (2024), 115558. https://doi.org/10.1016/j.chaos.2024.115558 doi: 10.1016/j.chaos.2024.115558
    [17] M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, K. Kaliraj, Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r$\in$(1, 2), Optim. Contr. Appl. Met., 43 (2022), 996–1019. https://doi.org/10.1002/oca.2867 doi: 10.1002/oca.2867
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(320) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog