Research article

The $ logTG $-$ SV $ model: A threshold-based volatility framework with logarithmic shocks for exchange rate dynamics

  • Received: 27 June 2025 Revised: 05 August 2025 Accepted: 12 August 2025 Published: 26 August 2025
  • MSC : 62M05, 62M10

  • This paper introduces a novel logarithmic threshold stochastic volatility $ GARCH $ model as an advanced extension of traditional $ GARCH $ frameworks. The model combines a logarithmic transformation of volatility shocks with a dynamic threshold, allowing it to better capture asymmetric behavior and sudden regime shifts commonly observed in financial markets. We provide clear theoretical conditions for strict and second-order stationarity, and for the existence of higher-order moments, which fills an important gap in the literature on stochastic volatility models. Monte Carlo simulations demonstrate the model's efficiency in estimating parameters, yielding accurate results with minimal bias for a sample size of 5,000. When applied to Algerian Dinar/Euro exchange rate data from 2000 to 2011, the model successfully captures volatility clustering and leverage effects, revealing a 30% increase in volatility in response to negative shocks relative to positive ones. It also improves predictive accuracy by 15% over standard models, underscoring its strength in capturing volatility in emerging markets with complex and nonlinear patterns.

    Citation: R. Alraddadi. The $ logTG $-$ SV $ model: A threshold-based volatility framework with logarithmic shocks for exchange rate dynamics[J]. AIMS Mathematics, 2025, 10(8): 19495-19511. doi: 10.3934/math.2025870

    Related Papers:

  • This paper introduces a novel logarithmic threshold stochastic volatility $ GARCH $ model as an advanced extension of traditional $ GARCH $ frameworks. The model combines a logarithmic transformation of volatility shocks with a dynamic threshold, allowing it to better capture asymmetric behavior and sudden regime shifts commonly observed in financial markets. We provide clear theoretical conditions for strict and second-order stationarity, and for the existence of higher-order moments, which fills an important gap in the literature on stochastic volatility models. Monte Carlo simulations demonstrate the model's efficiency in estimating parameters, yielding accurate results with minimal bias for a sample size of 5,000. When applied to Algerian Dinar/Euro exchange rate data from 2000 to 2011, the model successfully captures volatility clustering and leverage effects, revealing a 30% increase in volatility in response to negative shocks relative to positive ones. It also improves predictive accuracy by 15% over standard models, underscoring its strength in capturing volatility in emerging markets with complex and nonlinear patterns.



    加载中


    [1] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31 (1986), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 doi: 10.1016/0304-4076(86)90063-1
    [2] D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica, 59 (1991), 347–370. https://doi.org/10.2307/2938260 doi: 10.2307/2938260
    [3] R. Engle, GARCH 101: The use of ARCH/GARCH models in applied econometrics, J. Econ. Perspect., 15 (2001), 157–168. https://doi.org/10.1257/jep.15.4.157 doi: 10.1257/jep.15.4.157
    [4] S. J. Taylor, Financial returns modelled by the product of two stochastic processes: A study of the daily sugar prices 1961–1979, In: Time series analysis: theory and practice 1, Amsterdam: North-Holland, 1982,203–226.
    [5] F. Black, Noise, J. Financ., 41 (1986), 528–543. https://doi.org/10.1111/j.1540-6261.1986.tb04513.x
    [6] E. Jacquier, N. G. Polson, P. E. Rossi, Bayesian analysis of stochastic volatility models with fat-tails and correlation errors, J. Econometrics, 122 (2004), 185–212. https://doi.org/10.1016/j.jeconom.2003.09.001 doi: 10.1016/j.jeconom.2003.09.001
    [7] A. Ghezal, I. Zemmouri, On the Markov-switching autoregressive stochastic volatility processes, SeMA, 81 (2024), 413–427. https://doi.org/10.1007/s40324-023-00329-1 doi: 10.1007/s40324-023-00329-1
    [8] Z. X. Ding, C. W. J. Granger, R. F. Engle, A long memory property of stock market returns and a new model, J. Empir. Financ., 1 (1993), 83–106. https://doi.org/10.1016/0927-5398(93)90006-D doi: 10.1016/0927-5398(93)90006-D
    [9] A. C. Harvey, Long memory in stochastic volatility, In: Forecasting volatility in the financial markets, 3 Eds., Oxford: Butterworth-Heinemann, 2007,351–363. https://doi.org/10.1016/B978-075066942-9.50018-2
    [10] M. A. Carnero, D. Peña, E. Ruiz, Persistence and kurtosis in $GARCH$ and stochastic volatility models, J. Financ. Economet., 2 (2004), 319–342. https://doi.org/10.1093/jjfinec/nbh012 doi: 10.1093/jjfinec/nbh012
    [11] J. Yu, On leverage in a stochastic volatility model, J. Econometrics, 127 (2005), 165–178. https://doi.org/10.1016/j.jeconom.2004.08.002 doi: 10.1016/j.jeconom.2004.08.002
    [12] C.-J. Kim, C. R. Nelson, State-space models with regime switching: classical and Gibbs-sampling approaches with applications, J. Am. Stat. Assoc., 95 (2003), 1373–1374. https://doi.org/10.2307/2669796 doi: 10.2307/2669796
    [13] A. Melino, S. M. Turnbull, Pricing foreign currency options with stochastic volatility, J. Econometrics, 45 (1990), 239–265. https://doi.org/10.1016/0304-4076(90)90100-8 doi: 10.1016/0304-4076(90)90100-8
    [14] S. Chib, F. Nardari, N. Shephard, Markov chain Monte Carlo methods for stochastic volatility models, J. Econometrics, 108 (2002), 281–316. https://doi.org/10.1016/S0304-4076(01)00137-3 doi: 10.1016/S0304-4076(01)00137-3
    [15] A. Doucet, S. Godsill, C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Stat. Comput., 10 (2000), 197–208. https://doi.org/10.1023/A:1008935410038 doi: 10.1023/A:1008935410038
    [16] J. Danielson, Stochastic volatility in asset prices: estimation with simulated maximum likelihood, J. Econometrics, 64 (1994), 375–400. https://doi.org/10.1016/0304-4076(94)90070-1 doi: 10.1016/0304-4076(94)90070-1
    [17] F. J. Breidt, A threshold autoregressive stochastic volatility model, VI Latin American Congress of Probability and Mathematical Statistics (CLAPEM), Valparaiso, Chile, 1996.
    [18] A. Ghezal, O. Alzeley, Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility, AIMS Mathematics, 9 (2024), 11805–11832. https://doi.org/10.3934/math.2024578 doi: 10.3934/math.2024578
    [19] A. Ghezal, M. Balegh, I. Zemmouri, Markov-switching threshold stochastic volatility models with regime changes, AIMS Mathematics, 9 (2024), 3895–3910. https://doi.org/10.3934/math.2024192 doi: 10.3934/math.2024192
    [20] H. Tong, On a threshold model, In: Pattern recognit and signal processing, Netherlands: Sijtho and Noordho, 1978,575–586. http://dx.doi.org/10.1007/978-94-009-9941-1_24
    [21] M. K. P. So, W. K. Li, K. Lam, A threshold stochastic volatility model, J. Forecasting, 21 (2002), 473–500. https://doi.org/10.1002/for.840 doi: 10.1002/for.840
    [22] C. W. S. Chen, F. C. Liu, M. K. P. So, Heavy-tailed-distributed threshold stochastic volatility models in financial time series, Aust. N. Z. J. Stat., 50 (2008), 29–51. https://doi.org/10.1111/j.1467-842X.2007.00498.x doi: 10.1111/j.1467-842X.2007.00498.x
    [23] X. P. Mao, E. Ruiz, H. Veiga, Threshold stochastic volatility: properties and forecasting, Int. J. Forecasting, 33 (2017), 1105–1123. https://doi.org/10.1016/j.ijforecast.2017.07.001 doi: 10.1016/j.ijforecast.2017.07.001
    [24] J. Geweke, Modelling persistence in conditional variances: A comment, Economet. Rev., 5 (1986), 57–61.
    [25] S. G. Pantula, Modeling the persistence of conditional variances: A comment, Economet. Rev., 5 (1986), 71–74. https://doi.org/10.1080/07474938608800099 doi: 10.1080/07474938608800099
    [26] R. F. Engle, T. Bollerslev, Reply, Economet. Rev., 5 (1986), 81–87. https://doi.org/10.1080/07474938608800101 doi: 10.1080/07474938608800101
    [27] C. Francq, G. Sucarrat, An exponential chi-squared $QMLE$ for $log$-$GARCH$ models via the $ARMA$ representation, J. Financ. Economet., 16 (2018), 129–154. https://doi.org/10.1093/jjfinec/nbx032 doi: 10.1093/jjfinec/nbx032
    [28] G. Sucarrat, The $log$-$GARCH$ model via $ARMA$ representations, In: Financial mathematics, volatility and covariance modelling, London: Routledge, 2019,336–359.
    [29] G. Sucarrat, A. Escribano, Estimation of $log$-$GARCH$ models in the presence of zero returns, Eur. J. Financ., 24 (2018), 809–827. https://doi.org/10.1080/1351847X.2017.1336452 doi: 10.1080/1351847X.2017.1336452
    [30] R. A. Davis, T. Mikosch, Probabilistic properties of stochastic volatility models, In: Handbook of financial time series, Berlin: Springer, 2009,255–267. https://doi.org/10.1007/978-3-540-71297-8_11
    [31] A. Doucet, A. M. Johansen, A tutorial on particle filtering and smoothing: fifteen years later, In: The Oxford handbook of nonlinear filtering, Oxford: Oxford University Press, 2011,656–705.
    [32] O. Alzeley, A. Ghezal, On an asymmetric multivariate stochastic difference volatility: structure and estimation, AIMS Mathematics, 9 (2024), 18528–18552. http://doi.org/10.3934/math.2024902 doi: 10.3934/math.2024902
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(328) PDF downloads(17) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog