In this manuscript, time-triggered and event-triggered aperiodic intermittent controls are proposed for asymptotic stabilization of unstable discrete-time systems. The time-triggered aperiodic intermittent controls (T-APICs) are designed respectively by imposing conditions on the average dwell-time and the minimum of the active control width. For event-triggered aperiodic intermittent controls (E-APICs), when the norm of the state violates the defined inequality, the control is triggered. For one proposed E-APIC mechanism, it is demanded that the control length should be bigger than a given constant. Then for another E-APIC mechanism, we impose a condition related to the state on the control length. By relaxing the constraints on the control gain matrix, the third E-APIC mechanism is proposed. For these control plans, the control continuously updates during the active control time interval. Then we propose another E-APIC for asymptotic stabilization of the discussed discrete-time system by using the concept of input -to-state stability (ISS) and imposing the conditions on the norm of the state. In order to exemplify the effectiveness of the proposed aperiodic intermittent control mechanisms, asymptotic stabilizations of three examples are discussed by the proposed theorems.
Citation: Huijuan Li, Yanbin Ning. Aperiodic intermittent control for discrete-time systems[J]. AIMS Mathematics, 2025, 10(8): 19412-19437. doi: 10.3934/math.2025867
In this manuscript, time-triggered and event-triggered aperiodic intermittent controls are proposed for asymptotic stabilization of unstable discrete-time systems. The time-triggered aperiodic intermittent controls (T-APICs) are designed respectively by imposing conditions on the average dwell-time and the minimum of the active control width. For event-triggered aperiodic intermittent controls (E-APICs), when the norm of the state violates the defined inequality, the control is triggered. For one proposed E-APIC mechanism, it is demanded that the control length should be bigger than a given constant. Then for another E-APIC mechanism, we impose a condition related to the state on the control length. By relaxing the constraints on the control gain matrix, the third E-APIC mechanism is proposed. For these control plans, the control continuously updates during the active control time interval. Then we propose another E-APIC for asymptotic stabilization of the discussed discrete-time system by using the concept of input -to-state stability (ISS) and imposing the conditions on the norm of the state. In order to exemplify the effectiveness of the proposed aperiodic intermittent control mechanisms, asymptotic stabilizations of three examples are discussed by the proposed theorems.
| [1] |
P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE T. Automat. Contr., 52 (2007), 1680–1685. https://doi.org/10.1109/TAC.2007.904277 doi: 10.1109/TAC.2007.904277
|
| [2] | A. Abudireman, A. Abdurahman, Fixed-time synchronization of spatiotemporal fuzzy neural network via aperiodic intermittent control with hyperbolic sine function, JAMC, (2025). https://doi.org/10.1016/j.cnsns.2025.108991 |
| [3] |
A. Abudireman, A. Abdurahman, H. Jiang, Fixed-time synchronization of spatiotemporal Cohen–Grossberg neural networks via aperiodic intermittent control, Commun. Nonlinear Sci., 150 (2025), 108991. https://doi.org/10.1007/s12190-025-02569-y doi: 10.1007/s12190-025-02569-y
|
| [4] |
Y. Jiang, S. Zhu, M. Shen, S. Wen, C. Mu, Aperiodically intermittent control approach to finite-time synchronization of delayed inertial memristive neural networks, IEEE TAI, 6 (2025), 1014–1023. https://doi.org/10.1109/TAI.2024.3507740 doi: 10.1109/TAI.2024.3507740
|
| [5] |
X. Liu, T. Chen, Synchronization of Complex Networks via Aperiodically Intermittent Pinning Control, IEEE T. Automat. Contr., 60 (2015), 3316–3321. https://doi.org/10.1109/TAC.2015.2416912 doi: 10.1109/TAC.2015.2416912
|
| [6] |
Y. Wei, M. Shen, Z. Zhu, X. Meng, Synchronization of complex networks with multiple disturbances via aperiodically intermittent control input, Appl. Math. Comput., 502 (2025), 129495. https://doi.org/10.1016/j.amc.2025.129495 doi: 10.1016/j.amc.2025.129495
|
| [7] |
M. Shen, X. Wu, S. Zhu, T. Huang, H. Yan, Intermittent iterative learning control for robot manipulators under packet dropouts, IEEE T-ASE, 22 (2025), 1451–1459. https://doi.org/10.1109/TASE.2024.3365813 doi: 10.1109/TASE.2024.3365813
|
| [8] |
P. Wang, Q. Zhang, H. Su, Aperiodically intermittent control for synchronization of discrete-time delayed neural networks, J. Franklin I., 359 (2022), 4915–4937. https://doi.org/10.1016/j.jfranklin.2022.04.033 doi: 10.1016/j.jfranklin.2022.04.033
|
| [9] |
P. Zhang, T. Liu, Z. Jiang, Input-to-state stabilization of nonlinear discrete-time systems with event-triggered controllers, Syst. Control Lett., 103 (2017), 16–22. https://doi.org/10.1016/j.sysconle.2017.02.012 doi: 10.1016/j.sysconle.2017.02.012
|
| [10] | A. Eqtami, D. V. Dimarogonas, K. J. Kyriakopoulos, Event-triggered control for discrete-time systems, Proceedings of the 2010 American Control Conference, (2010), 4719–4724. https://doi.org/10.1109/ACC.2010.5531089 |
| [11] |
B. Liu, T. Liu, P. Xiao, Dynamic event-triggered intermittent control for stabilization of delayed dynamical systems, Automatica, 149 (2023), 110847. https://doi.org/10.1016/j.automatica.2022.110847 doi: 10.1016/j.automatica.2022.110847
|
| [12] |
B. Liu, M. Yang, T. Liu, D. Hill, Stabilization to exponential Input-to-State stability via aperiodic intermittent control, IEEE T. Automat. Contr., 66 (2021), 2913–2919. https://doi.org/10.1109/TAC.2020.3014637 doi: 10.1109/TAC.2020.3014637
|
| [13] |
B. Liu, M. Yang, B. Xu, G. Zhang, Exponential stabilization of continuous-time dynamical systems via time and event triggered aperiodic intermittent control, Appl. Math. Comput., 398 (2021), 125713. https://doi.org/10.1016/j.amc.2020.125713 doi: 10.1016/j.amc.2020.125713
|
| [14] |
Y. Li, C. Li, Complete synchronization of delayed chaotic neural networks by intermittent control with two switches in a control period, Neurocomputing, 173 (2016), 1341–1347. https://doi.org/10.1016/j.neucom.2015.09.007 doi: 10.1016/j.neucom.2015.09.007
|
| [15] |
J. Yu, C. Hu, H. Jiang, Z. Teng, Synchronization of nonlinear systems with delays via periodically nonlinear intermittent control, Commun. Nonlinear Sci., 17 (2012), 2978–2989. https://doi.org/10.1016/j.cnsns.2011.11.028 doi: 10.1016/j.cnsns.2011.11.028
|
| [16] |
W. Sun, X. Li, Aperiodic intermittent control for exponential input-to-state stabilization of nonlinear impulsive systems, Nonlinear Anal. Hybri., 50 (2023), 101404. https://doi.org/10.1016/j.nahs.2023.101404 doi: 10.1016/j.nahs.2023.101404
|
| [17] |
X. Zhang, Q. Han, B. Zhang, An overview and deep investigation on Sampled-Data-Based Event-Triggered control and filtering for networked systems, IEEE T. Ind. Inform., 13 (2017), 4–16. https://doi.org/10.1109/TII.2016.2607150 doi: 10.1109/TII.2016.2607150
|
| [18] |
S. Cai, J. Hao, Q. He, Z. Liu, New results on synchronization of chaotic systems with time-varying delays via intermittent control, Nonlinear Dynam., 67 (2012), 393–402. https://doi.org/10.1007/s11071-011-9987-4 doi: 10.1007/s11071-011-9987-4
|
| [19] |
H. Zhu, B. Cui, Stabilization and synchronization of chaotic systems via intermittent control, Commun. Nonlinear Sci., 15 (2010), 3577–3586. https://doi.org/10.1016/j.cnsns.2009.12.029 doi: 10.1016/j.cnsns.2009.12.029
|
| [20] |
C. Xu, D. Tong, Q. Chen, W. Zhou, Y. Xu, Exponential synchronization of chaotic systems with stochastic noise via periodically intermittent contro, Int. J. Robust Nonlin., 30 (2020), 2611–2624. https://doi.org/10.1002/rnc.4893 doi: 10.1002/rnc.4893
|
| [21] |
Q. Wang, Y. He, Time-triggered intermittent control of continuous systems, Int. J. Robust Nonlin., 31 (2021), 6867–6879. https://doi.org/10.1002/rnc.5673 doi: 10.1002/rnc.5673
|
| [22] |
Z. Zhang, Y. He, C. Zhang, M. Wu, Exponential stabilization of neural networks with time-varying delay by periodically intermittent control, Neurocomputing, 207 (2016), 469–475. https://doi.org/10.1016/j.neucom.2016.05.022 doi: 10.1016/j.neucom.2016.05.022
|
| [23] |
X. Zhang, Q. Wang, B. Fu, Further stabilization criteria of continuous systems with aperiodic time-triggered intermittent control, Commun. Nonlin. Sci., 125 (2023), 107387. https://doi.org/10.1016/j.cnsns.2023.107387 doi: 10.1016/j.cnsns.2023.107387
|
| [24] |
X. Zhang, Q. Wang, B. Fu, Exponential stability of stochastic multi-layer complex network with regime-switching diffusion via aperiodically intermittent control, Inform. Sci., 662 (2024), 120241. https://doi.org/10.1016/j.ins.2024.120241 doi: 10.1016/j.ins.2024.120241
|
| [25] |
X. Liu, Y. Guo, M. Li, Y. Zhang, Exponential synchronization of complex networks via intermittent dynamic event-triggered control, Neurocomputing, 581 (2024), 127478. https://doi.org/10.1016/j.neucom.2024.127478 doi: 10.1016/j.neucom.2024.127478
|
| [26] |
Y. Wu, Z. Guo, L. Xue, C. Ki. Ahn, J. Liu, Stabilization of complex networks under asynchronously intermittent event-triggered control, Automatica, 161 (2024), 111493. https://doi.org/10.1016/j.automatica.2023.111493 doi: 10.1016/j.automatica.2023.111493
|
| [27] |
H. Li, A. Liu, Asymptotic stability analysis via indefinite Lyapunov functions and design of nonlinear impulsive control systems, Nonlinear Anal. Hybri., 38 (2020), 100936. https://doi.org/10.1016/j.nahs.2020.100936 doi: 10.1016/j.nahs.2020.100936
|
| [28] |
S. Saab, D. Shen, M. Orabi, D. Kors, R. H. Jaafar, Iterative Learning Control: Practical Implementation and Automation, IEEE T. Ind. Electron., 69 (2022), 1858–1866. https://doi.org/10.1109/TIE.2021.306386 doi: 10.1109/TIE.2021.306386
|
| [29] |
F. Mazenc, M. Malisoff, C. Barbalata, Z. Jiang, Event-triggered control for linear time-varying systems using a positive systems approach, Syst. Control Lett., 161 (2022), 105131. https://doi.org/10.1016/j.sysconle.2022.105131 doi: 10.1016/j.sysconle.2022.105131
|
| [30] |
T. Liu, Z. Jiang, A Small-Gain approach to robust Event-Triggered control of nonlinear systems, IEEE T. Automat. Contr., 60 (2015), 2072–2085. https://doi.org/10.1109/TAC.2015.2396645 doi: 10.1109/TAC.2015.2396645
|
| [31] |
R. Iervolino, R. Ambrosino, Stabilizing control design for state-dependent impulsive dynamical linear systems, Automatica, 147 (2023), 110681. https://doi.org/10.1109/TAC.2015.2396645 doi: 10.1109/TAC.2015.2396645
|
| [32] |
Z. Jiang, Y. Wang, Input-to-state stability for discrete-time nonlinear systems, Automatica J. IFAC, 37 (2001), 857–869. https://doi.org/10.1016/S0005-1098(01)00028-0 doi: 10.1016/S0005-1098(01)00028-0
|
| [33] | T. Yang, Impulsive control theory, Springer Verlag, Berlin, Germany, (2001), 4719–4724. https://doi.org/10.1016/S0005-1098(01)00028-0 |
| [34] | A. Eqtami, D. V. Dimarogonas, K. J.Kyriakopoulos, Event-triggered control for discrete-time systems, Proceedings of the 2010 American Control Conference, (2010). https://doi.org/10.1109/ACC.2010.5531089 |