In this paper we study the inversion map and the Kelvin transform on the Heisenberg group $ \mathbb{H}^{n} $. We first analyze the invariance of the Kelvin transform and provide an algebraic proof to the formula involving the sub-Laplacian. Furthermore, we apply the formula to seek the cylindrically symmetric solution to a sub-elliptic equation on $ \mathbb{H}^{n} $ and determine the best constant of the Hardy-Sobolev type inequality.
Citation: Zimiao Mu, Feng Zhou. Kelvin transform on the Heisenberg group revisited and applications to the best constant of Hardy-Sobolev type inequality[J]. AIMS Mathematics, 2025, 10(8): 19438-19459. doi: 10.3934/math.2025868
In this paper we study the inversion map and the Kelvin transform on the Heisenberg group $ \mathbb{H}^{n} $. We first analyze the invariance of the Kelvin transform and provide an algebraic proof to the formula involving the sub-Laplacian. Furthermore, we apply the formula to seek the cylindrically symmetric solution to a sub-elliptic equation on $ \mathbb{H}^{n} $ and determine the best constant of the Hardy-Sobolev type inequality.
| [1] | A. D. Alexandrov, Uniqueness theorems for surfaces in the large, Vestnik Leningrad Univ.: Math., 13 (1958), 5–8. |
| [2] | W. Chen, C. Li, Methods on nonlinear elliptic equations, American Institute of Mathematical Sciences, 4 (2010). |
| [3] |
L. A. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271–297. https://doi.org/10.1002/cpa.3160420304 doi: 10.1002/cpa.3160420304
|
| [4] | S. Zhang, Y. Han, An application of the method of moving sphere in the Heisenberg group-Liouville type theorem of a class of semilinear equations, Acta Math. Sci., Ser. A, 37 (2017), 278–286. |
| [5] |
A. Kor$\acute{a}$nyi, Kelvin transforms and harmonic polynomials on the Heisenberg group, J. Funct. Anal., 49 (1982), 177–185. https://doi.org/10.1016/0022-1236(82)90078-7 doi: 10.1016/0022-1236(82)90078-7
|
| [6] | N. Garofalo, D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001), 411–448. https://doi.org/10.1215/S0012-7094-01-10631-5 |
| [7] |
G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
|
| [8] |
J. Dou, M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper Half space, Int. Math. Res. Not., 2015 (2015), 651–687. https://doi.org/10.1093/imrn/rnt213 doi: 10.1093/imrn/rnt213
|
| [9] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349–374. https://doi.org/10.2307/2007032 doi: 10.2307/2007032
|
| [10] |
A. Abolarinwa, M. Ruzhansky, Generalised Hardy type and Rellich type inequalities on the Heisenberg group, J. Pseudo-Differ. Oper. Appl., 15 (2024), 3. https://doi.org/10.1007/s11868-023-00575-x doi: 10.1007/s11868-023-00575-x
|
| [11] | Y. Han, Y. Jin, S. Zhang, Hardy-Sobolev type inequalities on anistropic Heisenberg groups, Appl. Math. J. Chinese Univ. Ser. A, 25 (2010), 440–446. |
| [12] |
L. Roncal, S. Thangavelu, Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302 (2016), 106–158. https://doi.org/10.1016/j.aim.2016.07.010 doi: 10.1016/j.aim.2016.07.010
|
| [13] | D. Lin, X. N. Ma, Best constant and extremal functions for a class Hardy-Sobolev-Maz'ya inequalities, arXiv, 2024. https://doi.org/10.48550/arXiv.2412.09033 |
| [14] | A. Kufner, L. Maligranda, L. E. Persson, The Hardy inequality, about its history and some related results, Pilsen: Vydavatelsk'y Servis Publishing House, 2007. |
| [15] |
Y. Y. Li, D. D. Monticelli, On fully nonlinear CR invariant equations on the Heisenberg group, J. Differ. Equ., 252 (2012), 1309–1349. https://doi.org/10.1016/j.jde.2011.09.002 doi: 10.1016/j.jde.2011.09.002
|
| [16] |
I. Birindelli, J. Prajapat, Nonlinear Liouville theorems in the Heisenberg group via the moving plane method, Commun. Part. Differ. Equ., 24 (1999), 1875–1890. https://doi.org/10.1080/03605309908821485 doi: 10.1080/03605309908821485
|
| [17] |
D. Jerison, J. Lee, The Yamabe problem on CR manifolds, J. Differential Geom., 25 (1987), 167–197. https://doi.org/10.4310/JDG/1214440849 doi: 10.4310/JDG/1214440849
|
| [18] | D. Ricciotti, p-Laplace equation in the Heisenberg group, SpringerBriefs in Mathematics, Cham: Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-23790-9 |
| [19] |
P. Niu, Y. Han, J. Han, A Hopf type lemma and a CR type inversion for the generalized Greiner operator, Can. Math. Bull., 47 (2004), 417–430. https://doi.org/10.4153/CMB-2004-041-4 doi: 10.4153/CMB-2004-041-4
|
| [20] |
Y. Han, P. Niu, Hardy-Sobolev type inequalities on the H-type group, Manuscripta Math., 118 (2005), 235–252. https://doi.org/10.1007/s00229-005-0589-7 doi: 10.1007/s00229-005-0589-7
|