The paper introduces a novel definition of tri-topological spaces, extending the classical theory of bi-topological spaces as developed by Kelly. It presents a unified framework linking separation axioms with compactness properties, building on results from Willard and Engelking. Central to this work is the interaction function $ \rho: \tau_1 \times \tau_2 \times \tau_3 \rightarrow \mathcal{P}(\mathcal{P}(X)) $, which encodes complex relationships among three topologies and satisfies five key axioms (TT1–TT5). This enables the modeling of topological phenomena beyond simple unions or products. The paper explores connections between tri-topological spaces and Lindelöf, paracompact, metacompact, and connected spaces. Several new theoretical results are presented with complete proofs, and practical relevance is demonstrated in three areas: digital topology, data analysis, and quantum gravity. Overall, the study offers new insights into point-set topology by integrating previously unrelated topological structures.
Citation: Jamal Oudetallah, Ala Amourah, Iqbal Batiha, Daniel Breaz, Sheza El-Deeb, Tala Sasa. On tri-topological spaces and their relations[J]. AIMS Mathematics, 2025, 10(8): 19395-19411. doi: 10.3934/math.2025866
The paper introduces a novel definition of tri-topological spaces, extending the classical theory of bi-topological spaces as developed by Kelly. It presents a unified framework linking separation axioms with compactness properties, building on results from Willard and Engelking. Central to this work is the interaction function $ \rho: \tau_1 \times \tau_2 \times \tau_3 \rightarrow \mathcal{P}(\mathcal{P}(X)) $, which encodes complex relationships among three topologies and satisfies five key axioms (TT1–TT5). This enables the modeling of topological phenomena beyond simple unions or products. The paper explores connections between tri-topological spaces and Lindelöf, paracompact, metacompact, and connected spaces. Several new theoretical results are presented with complete proofs, and practical relevance is demonstrated in three areas: digital topology, data analysis, and quantum gravity. Overall, the study offers new insights into point-set topology by integrating previously unrelated topological structures.
| [1] |
H. Alzaareer, H. Al-Zoubi, F. Abed Al-Fattah, Quadrics with finite Chen-type Gauss map, J. Prime Res. Math., 18 (2022), 96–107. https://doi.org/10.37394/23206.2025.24.9 doi: 10.37394/23206.2025.24.9
|
| [2] |
J. Oudetallah, R. Alharbi, S. Rawashdeh, I. M. Batiha, A. Amourah, T. Sasa, Nearly Lindelöfness in $N^\text{th}$-topological spaces, Int. J. Anal. Appl., 23 (2025), 140. https://doi.org/10.28924/2291-8639-23-2025-140 doi: 10.28924/2291-8639-23-2025-140
|
| [3] |
A. Amourah, J. Oudetallah, I. Batiha, J. Salah, M. Shatnawi, $\sigma$-compact spaces in $N^\text{th}$-topological space, Eur. J. Pure Appl. Math., 18 (2025), 5802. https://doi.org/10.29020/nybg.ejpam.v18i2.5802 doi: 10.29020/nybg.ejpam.v18i2.5802
|
| [4] |
J. Oudetallah, R. Alharbi, I. Batiha, S. Rawashdeh, A. Amourah, Some types of tri-Lindelöfness spaces, Eur. J. Pure Appl. Math., 18 (2025), 5578–5578. https://doi.org/10.29020/nybg.ejpam.v18i2.5578 doi: 10.29020/nybg.ejpam.v18i2.5578
|
| [5] |
J. Oudetallah, I. Batiha, A. A. Al-Smadi, Nearly Lindelöfness in bitopological spaces, South East Asian J. Math. Math. Sci., 20 (2025), 341–358. https://doi.org/10.56827/SEAJMMS.2024.2003.26 doi: 10.56827/SEAJMMS.2024.2003.26
|
| [6] |
A. Amourah, J. Oudetallah, I. Batiha, J. Salah, S. Alsaadi, T. Sasa, Some types of tri-locally compactness spaces, Eur. J. Pure Appl. Math., 18 (2025), 5764. https://doi.org/10.29020/nybg.ejpam.v18i2.5764 doi: 10.29020/nybg.ejpam.v18i2.5764
|
| [7] | A. V. Arkhangel'skii, L. S. Pontryagin, General topology I: Basic concepts and constructions, dimension theory, Berlin: Springer-Verlag, 1990. https://doi.org/10.1007/978-3-642-61265-7 |
| [8] | J. R. Munkres, Topology, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2000. |
| [9] | S. Willard, General topology, New York: Dover Publications, 2012 |
| [10] | J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., s3-13, (1963), 71–89. https://doi.org/10.1112/plms/s3-13.1.71 |
| [11] | R. Engelking, General topology, 2nd ed., Heldermann Verlag, Berlin, 1989. |
| [12] | M. C. Joshi, R. K. Bose, Some topics in nonlinear functional analysis, New Delhi: Wiley Eastern Limited, 1985. |
| [13] | L. A. Steen, J. A. Seebach, Jr., Counterexamples in topology, New York: Springer-Verlag, 1978. |