The increasing demand for flexible statistical models defined on the unit interval has led to the development of new distributions capable of capturing various tail behaviors and data shapes. In this study, we introduce an extended form of the power unit inverse Lindley distribution, offering greater modeling flexibility for bounded data. We explore its key statistical properties, including moments, skewness, kurtosis, quantile function, Fisher information matrix, extropy, and negative cumulative extropy. To assess parameter estimation, fifteen classical methods are implemented and evaluated through simulation, demonstrating high efficiency and low bias, even for small samples. The proposed model is then applied to two real datasets: annual inflation rates from 45 Asian countries and failure times of mechanical components. Comparative analysis with several existing unit distributions confirms the superior goodness-of-fit and practical applicability of the proposed model in both economic and engineering contexts.
Citation: Ahmed M. Gemeay, I. Elbatal, Ehab M. Almetwally, Sule Omeiza Bashiru, I. A. Husseiny. Statistical modeling with a novel distribution: Inference, information measures, and applications to inflation rates and mechanical failure data[J]. AIMS Mathematics, 2025, 10(8): 19357-19394. doi: 10.3934/math.2025865
The increasing demand for flexible statistical models defined on the unit interval has led to the development of new distributions capable of capturing various tail behaviors and data shapes. In this study, we introduce an extended form of the power unit inverse Lindley distribution, offering greater modeling flexibility for bounded data. We explore its key statistical properties, including moments, skewness, kurtosis, quantile function, Fisher information matrix, extropy, and negative cumulative extropy. To assess parameter estimation, fifteen classical methods are implemented and evaluated through simulation, demonstrating high efficiency and low bias, even for small samples. The proposed model is then applied to two real datasets: annual inflation rates from 45 Asian countries and failure times of mechanical components. Comparative analysis with several existing unit distributions confirms the superior goodness-of-fit and practical applicability of the proposed model in both economic and engineering contexts.
| [1] |
D. V. Lindley, Fiducial distributions and Bayes' theorem, J. Royal Stat. Soc.: Ser. B (Methodological), 20 (1958), 102–107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x doi: 10.1111/j.2517-6161.1958.tb00278.x
|
| [2] |
N. Lazri, H. Zeghdoudi, A. Sakri, V. Raman, Square ZLindley distribution: Statistical properties, simulation and applications in sciences, MAS J. Appl. Sci., 9 (2024), 855–868. http://doi.org/10.5281/zenodo.13926087 doi: 10.5281/zenodo.13926087
|
| [3] |
M. E. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its application, Math. Comput. Simulat., 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007
|
| [4] | H. Zakerzadeh, A. Dolati, Generalized Lindley distribution, J. Math. Ext., 3 (2009), 1–17. |
| [5] | R. Shanker, A. Mishra, A quasi Lindley distribution, Afr. J. Math. Comput. Sci. Res., 6 (2013), 64–71. |
| [6] |
M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, L. J. Al-Enezi, Power Lindley distribution and associated inference, Comput. Stat. Data Anal., 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026 doi: 10.1016/j.csda.2013.02.026
|
| [7] |
H. S. Bakouch, B. M. Al-Zahrani, A. A. Al-Shomrani, V. A. A. Marchi, F. Louzada, An extended Lindley distribution, J. Korean Stat. Soc., 41 (2012), 75–85. https://doi.org/10.1016/j.jkss.2011.06.002 doi: 10.1016/j.jkss.2011.06.002
|
| [8] | T. Belhamra, H. Zeghdoudi, V. Raman, Reliability for Zeghdoudi distribution with an outlier, fuzzy reliability and application, Stat. Transit. new series, 25 (2024), 167–177. |
| [9] |
K. V. P. Barco, J. Mazucheli, V. Janeiro, The inverse power Lindley distribution, Commun. Stat.-Simulat. Comput., 46 (2017), 6308–6323. https://doi.org/10.1080/03610918.2016.1202274 doi: 10.1080/03610918.2016.1202274
|
| [10] |
V. K. Sharma, S. K. Singh, U. Singh, V. Agiwal, The inverse Lindley distribution: A stress-strength reliability model with application to head and neck cancer data, J. Ind. Prod. Eng., 32 (2015), 162–173. https://doi.org/10.1080/21681015.2015.1025901 doi: 10.1080/21681015.2015.1025901
|
| [11] | D. Qayoom, A. A. Rather, N. Alsadat, E. Hussam, A. M. Gemeay, A new class of Lindley distribution: System reliability, simulation and applications, Heliyon, 10 (2024), e23099. |
| [12] |
S. Benchiha, A. I. Al-Omari, N. Alotaibi, M. Shrahili, Weighted generalized Quasi Lindley distribution: Different methods of estimation, applications for COVID-19 and engineering data, AIMS Mathematics, 6 (2021), 11850–11878. https://doi.org/10.3934/math.2021688 doi: 10.3934/math.2021688
|
| [13] |
I. S. Mabrouk, Statistical analysis for an imprecise flood dataset using the generalized inverse Lindley distribution, Int. J. Contemp. Math. Sci., 14 (2019), 163–177. https://doi.org/10.12988/ijcms.2019.9718 doi: 10.12988/ijcms.2019.9718
|
| [14] |
Y. Tashkandy, W. Emam, M. M. Ali, H. M. Yousof, B. Ahmed, Quality control testing with experimental practical illustrations under the modified lindley distribution using single, double, and multiple acceptance sampling plans, Mathematics, 11 (2023), 2184. https://doi.org/10.3390/math11092184 doi: 10.3390/math11092184
|
| [15] |
J. Mazucheli, J. A. Achcar, The Lindley distribution applied to competing risks lifetime data, Comput. Meth. Prog. Bio., 104 (2011), 188–192. https://doi.org/10.1016/j.cmpb.2011.03.006 doi: 10.1016/j.cmpb.2011.03.006
|
| [16] |
N. Khodja, A. M. Gemeay, H. Zeghdoudi, K. Karakaya, A. M. Alshangiti, M. E. Bakr, et al., Modeling voltage real data set by a new version of Lindley distribution, IEEE Access, 11 (2023), 67220–67229. https://doi.org/10.1109/ACCESS.2023.3287926 doi: 10.1109/ACCESS.2023.3287926
|
| [17] |
A. M. Gemeay, N. Alsadat, C. Chesneau, M. Elgarhy, Power unit inverse Lindley distribution with different measures of uncertainty, estimation and applications, AIMS Mathematics, 9 (2024), 20976–21024. https://doi.org/10.3934/math.20241021 doi: 10.3934/math.20241021
|
| [18] | V. A. Epanechnikov, Non-parametric estimation of a multivariate probability density, Theor. Probab. Appl., 14 (1969), 153–158. |
| [19] |
A. Alkhazaalh, L. Al-Zoubi, Epanechnikov-exponential distribution: Properties and applications, Gen. Math., 29 (2021), 13–29. https://doi.org/10.2478/gm-2021-0002 doi: 10.2478/gm-2021-0002
|
| [20] | S. Alkhazaleh, A. Al-khazaleh, Epanechnikov Akash Distributions, In: the 1st Scientific Conference for Graduate Students (Contributions toward Excellence and Creativity), Jordan, 2023. |
| [21] |
H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed, Bivariate Epanechnikov-exponential distribution: Statistical properties, reliability measures, and applications to computer science data, AIMS Mathematics, 9 (2024), 32299–32327. https://doi.org/10.3934/math.20241550 doi: 10.3934/math.20241550
|
| [22] | W. T. Shaw, I. R. C. Buckley, The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, 2009, arXiv: 0901.0434. https://doi.org/10.48550/arXiv.0901.0434 |
| [23] | A. I. Al-Omari, A. M. Al-khazaleh, L. M. Alzoubi, Transmuted janardan distribution: A generalization of the janardan distribution, J. Stat. Appl. Pro., 5 (2017), 1–11. |
| [24] |
S. Park, N. Balakrishnan, On simple calculation of the Fisher information in hybrid censoring schemes, Stat. Probabil. Lett., 79 (2009), 1311–1319. https://doi.org/10.1016/j.spl.2009.02.004 doi: 10.1016/j.spl.2009.02.004
|
| [25] |
S. Park, N. Balakrishnan, S. W. Kim, Fisher information in progressive hybrid censoring schemes, Statistics, 45 (2011), 623–631. https://doi.org/10.1080/02331888.2010.504988 doi: 10.1080/02331888.2010.504988
|
| [26] |
I. A. Husseiny, M. A. Alawady, H. M. Barakat, M. A. Abd Elgawad, Information measures for order statistics and their concomitants from Cambanis bivariate family, Commun. Stat.-Theor. M., 53 (2024), 865–881. https://doi.org/10.1080/03610926.2022.2093909 doi: 10.1080/03610926.2022.2093909
|
| [27] |
F. Lad, G. Sanfilippo, G. Agro, Extropy: Complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
|
| [28] |
S. Tahmasebi, A. Toomaj, On negative cumulative extropy with applications, Commun. Stat.-Theor. M., 51 (2022), 5025–5047. https://doi.org/10.1080/03610926.2020.1831541 doi: 10.1080/03610926.2020.1831541
|
| [29] |
I. A. Husseiny, H. M. Barakat, T. S. Taher, M. A. Alawady, Fisher information in order statistics and their concomitants for Cambanis bivariate distribution, Math. Slovaca, 74 (2024), 501–520. https://doi.org/10.1515/ms-2024-0038 doi: 10.1515/ms-2024-0038
|
| [30] |
H. M. Barakat, E. M. Nigm, I. A. Husseiny, Measures of information in order statistics and their concomitants for the single iterated Farlie–Gumbel–Morgenstern bivariate distribution, Math. Popul. Stud., 28 (2021), 154–175. https://doi.org/10.1080/08898480.2020.1767926 doi: 10.1080/08898480.2020.1767926
|
| [31] |
R. A. Fisher, On the mathematical foundations of theoretical statistics, Philos. Tran. Royal Soc. London. Ser. A, 222 (1922), 309–368. https://doi.org/10.1098/rsta.1922.0009 doi: 10.1098/rsta.1922.0009
|
| [32] |
T. W. Anderson, D. A. Darling, Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, Ann. Math. Statist., 23 (1952), 193–212. https://doi.org/10.1214/aoms/1177729437 doi: 10.1214/aoms/1177729437
|
| [33] |
K. Choi, W. G. Bulgren, An estimation procedure for mixtures of distributions, J. Royal Stat. Soc.: Ser. B (Methodological), 30 (1968), 444–460. https://doi.org/10.1111/j.2517-6161.1968.tb00743.x doi: 10.1111/j.2517-6161.1968.tb00743.x
|
| [34] |
J. H. K. Kao, Computer methods for estimating Weibull parameters in reliability studies, IRE Tran. Reliab. Qual. Control, PGRQC-13 (1958), 15–22. https://doi.org/10.1109/IRE-PGRQC.1958.5007164 doi: 10.1109/IRE-PGRQC.1958.5007164
|
| [35] |
J. J. Swain, S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions in Johnson's translation system, Journal of Statistical Computation and Simulation, 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
|
| [36] |
M. S. Mukhtar, M. El-Morshedy, M. S. Eliwa, H. M. Yousof, Expanded Fréchet model: Mathematical properties, copula, different estimation methods, applications and validation testing, Mathematics, 8 (2020), 1949. https://doi.org/10.3390/math8111949 doi: 10.3390/math8111949
|
| [37] | H. Torabi, A general method for estimating and hypothesis testing using spacings, J. Stat. Theory Appl., 8 (2008), 163–168. |
| [38] |
G. A. S. Aguilar, F. A. Moala, G. M. Cordeiro, Zero-truncated poisson exponentiated gamma distribution: Application and estimation methods, J. Stat. Theory Pract., 13 (2019), 57. https://doi.org/10.1007/s42519-019-0059-2 doi: 10.1007/s42519-019-0059-2
|
| [39] |
M. Elgarhy, A. Al Mutairi, A. S. Hassan, C. Chesneau, A. H. Abdel-Hamid, Bayesian and non-Bayesian estimations of truncated inverse power Lindley distribution under progressively type-Ⅱ censored data with applications, AIP Adv., 13 (2023), 095130. https://doi.org/10.1063/5.0172632 doi: 10.1063/5.0172632
|
| [40] | D. N. P. Murthy, M. Xie, R. Jiang, Weibull models, Hoboken: John Wiley & Sons Inc., 2004. |
| [41] | J. Mazucheli, A. F. B. Menezes, M. E. Ghitany, The unit-Weibull distribution and associated inference, J. Appl. Probab. Stat., 13 (2018), 1–22. |
| [42] |
A. I. Al-Omari, A. R. A. Alanzi, S. S. Alshqaq, The unit two parameters Mirra distribution: Reliability analysis, properties, estimation and applications, Alex. Eng. J., 92 (2024), 238–253. https://doi.org/10.1016/j.aej.2024.02.063 doi: 10.1016/j.aej.2024.02.063
|
| [43] | J. Mazucheli, A. F. B. Menezes, S. Dey, The Unit-Birnbaum-Saunders Distribution with applications, Chil. J. Stat., 9 (2018), 47–57. |
| [44] |
P. Kumaraswamy, A generalized probability density function for double-bounded random processes, J. Hydrol., 46 (1980), 79–88. https://doi.org/10.1016/0022-1694(80)90036-0 doi: 10.1016/0022-1694(80)90036-0
|
| [45] | N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, volume 2, 2nd Edition, 1955. |