This paper presents a novel fixed point theorem for measurable selections arising from pairs of fuzzy set-valued operators defined on Polish spaces. By establishing conditions under which such selections exist, we provided a rigorous framework for analyzing the solvability of random multivalued operator equations in fuzzy environments. Our approach seamlessly integrated fuzziness and randomness, extending classical fixed point theory into a more realistic setting where uncertainty is both probabilistic and vague. To demonstrate the utility and applicability of our results, we constructed well-structured and insightful examples rooted in engineering-inspired scenarios. These examples not only validate the theoretical framework but also highlight its effectiveness in modeling complex systems affected by dual sources of uncertainty.
Citation: Akbar Azam, Faryad Ali, Sehar Afsheen, Mohammed Shehu Shagari. Fuzziness and randomness in fixed point theory: Measurable selections and applications[J]. AIMS Mathematics, 2025, 10(8): 19335-19356. doi: 10.3934/math.2025864
This paper presents a novel fixed point theorem for measurable selections arising from pairs of fuzzy set-valued operators defined on Polish spaces. By establishing conditions under which such selections exist, we provided a rigorous framework for analyzing the solvability of random multivalued operator equations in fuzzy environments. Our approach seamlessly integrated fuzziness and randomness, extending classical fixed point theory into a more realistic setting where uncertainty is both probabilistic and vague. To demonstrate the utility and applicability of our results, we constructed well-structured and insightful examples rooted in engineering-inspired scenarios. These examples not only validate the theoretical framework but also highlight its effectiveness in modeling complex systems affected by dual sources of uncertainty.
| [1] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|
| [2] |
L. Zhou, W. Jia, L. Liu, Essential stability of fuzzy equilibria for generalized multiobjective games with fuzzy constraint mappings, Fuzzy Sets Syst., 447 (2022), 113–122. https://doi.org/10.1016/j.fss.2021.11.012 doi: 10.1016/j.fss.2021.11.012
|
| [3] |
J. Liu, G. Yu, Fuzzy Kakutani-Fan-Glicksberg fixed point theorem and existence of Nash equilibria for fuzzy games, Fuzzy Sets Syst., 447 (2022), 100–112. https://doi.org/10.1016/j.fss.2022.02.002 doi: 10.1016/j.fss.2022.02.002
|
| [4] |
Y. Liu, W. Jia, Existence and well-posedness of the $\alpha $-core for generalized fuzzy games, Fuzzy Sets Syst., 458 (2023), 108–117. https://doi.org/10.1016/j.fss.2022.06.018 doi: 10.1016/j.fss.2022.06.018
|
| [5] |
S. Heilpern., Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4
|
| [6] | A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82 (1976), 641–657. |
| [7] |
C. Himmelberg, Measurable relations, Fund. Math., 87 (1975), 53–72. https://doi.org/10.4064/fm-87-1-53-72 doi: 10.4064/fm-87-1-53-72
|
| [8] | K. Kuratowski, C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 13 (1965), 397–403. |
| [9] |
H. M. Abu-Donia, Common fixed points theorems for fuzzy mappings under $\phi$-contraction condition, Chaos Soliton Fract., 34 (2007), 538–543. https://doi.org/10.1016/j.chaos.2005.03.055 doi: 10.1016/j.chaos.2005.03.055
|
| [10] |
I. Beg, M. Abbas, Random fixed point theorems for a random operator on an unbounded subset of a Banach space, Appl. Math. Lett., 21 (2008), 1001–1004. https://doi.org/10.1016/j.aml.2007.10.015 doi: 10.1016/j.aml.2007.10.015
|
| [11] |
I. Beg, M. Abbas, Iterative procedures for solutions of random operator equations in Banach spaces, J. Math. Anal. Appl., 315 (2006), 181–201. https://doi.org/10.1016/j.jmaa.2005.05.073 doi: 10.1016/j.jmaa.2005.05.073
|
| [12] | N. Shahzad, Random fixed points of multivalued maps in Fráchet spaces, Arch. Math., 38 (2002), 95–100. http://dml.cz/dmlcz/107824 |
| [13] |
N. Shahzad, N. Hussain, Deterministic and random coincidence point results for f-nonexpansive maps, J. Math. Anal. Appl., 323 (2006), 1038–1046. https://doi.org/10.1016/j.jmaa.2005.10.057 doi: 10.1016/j.jmaa.2005.10.057
|
| [14] |
K. Benkirane, A. Adraoui, E. M. Marhrani, Some random fixed-point theorems for weakly contractive random operators in a separable Banach space, Int. J. Math. Math. Sci., 2021 (2021), 9484771. https://doi.org/10.1155/2021/9484771 doi: 10.1155/2021/9484771
|
| [15] |
H. M. Srivastava, R. Chaharpashlou, R. Saadati, C. Li, A fuzzy random boundary value problem, Axioms, 11 (2022), 414. https://doi.org/10.3390/axioms11080414 doi: 10.3390/axioms11080414
|
| [16] |
R. Saadati, T. Allahviranloo, D. O'Regan, F. S. Alshammari, Fuzzy control problem via random multi-valued equations in symmetric f-N-NLS, Symmetry, 14 (2022), 1778. https://doi.org/10.3390/sym14091778 doi: 10.3390/sym14091778
|
| [17] |
A. A. Abdulsahib, F. S. Fadhel, J. H. Eidi, Approximate solution of linear fuzzy random ordinary differential equations using Laplace variational iteration method, Iraqi J. Sci., 65 (2024), 804–817. https://doi.org/10.24996/ijs.2024.65.2.18 doi: 10.24996/ijs.2024.65.2.18
|
| [18] |
M. A. Khan, R. Shafqat, A. U. K. Niazi, Existence results of fuzzy delay impulsive fractional differential equation by fixed point theory approach, J. Funct. Spaces, 2022 (2022), 4123949. https://doi.org/10.1155/2022/4123949 doi: 10.1155/2022/4123949
|
| [19] |
M. S. Shagari, T. Alotaibi, H. Aydi, A. Aloqaily, N. Mlaiki, New $L$-fuzzy fixed point techniques for studying integral inclusions, J. Inequal. Appl., 2024 (2024), 83. https://doi.org/10.1186/s13660-024-03157-7 doi: 10.1186/s13660-024-03157-7
|
| [20] |
A. Tassaddiq, S. Kanwal, F. Rasheed, D. K. Almutairi, A study on the existence of fixed point results for some fuzzy contractions in fuzzy metric spaces with application, Axioms, 14 (2025), 132. https://doi.org/10.3390/axioms14020132 doi: 10.3390/axioms14020132
|
| [21] |
Y. Huang, F. Xiao, Z. Cao, C. T. Lin, Higher order fractal belief Rényi divergence with its applications in pattern classification, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2023), 14709–14726. https://doi.org/10.1109/TPAMI.2023.3310594 doi: 10.1109/TPAMI.2023.3310594
|
| [22] |
Y. Huang, F. Xiao, Z. Cao, C. T. Lin, Fractal belief Rényi divergence with its applications in pattern classification, IEEE Trans. Knowl. Data Eng., 36 (2023), 8297–8312. https://doi.org/10.1109/TKDE.2023.3342907 doi: 10.1109/TKDE.2023.3342907
|