This paper investigates the existence and uniqueness of solutions for two types of conformable fractional boundary value problems: a classical CFBVP of order $ \alpha \in (\frac{3}{2}, 2] $, and a sequential conformable fractional boundary value problem (SCFBVP) of order $ \beta \in(\frac{1}{2}, 1] $. By establishing new integral bounds for the Green's functions associated with both problems, we extend the results obtained by Z. Laadjal et al. (Numerical Methods for Partial Differential Equations, 40 (2024), e22760) by applying Rus's fixed point theorems. Furthermore, we establish an existence and uniqueness theorem for the SCFBVP based on the Banach fixed point theorem, which complements their findings. Our results improve their work by relaxing key assumptions and broadening applicability. Finally, we present a detailed numerical comparison between the results herein and the existing results, highlighting the advantages of our approach, followed by concluding remarks.
Citation: Saleh S. Almuthaybiri. On classical and sequential conformable fractional boundary value problems: new results via alternative fixed point method[J]. AIMS Mathematics, 2025, 10(8): 19280-19299. doi: 10.3934/math.2025862
This paper investigates the existence and uniqueness of solutions for two types of conformable fractional boundary value problems: a classical CFBVP of order $ \alpha \in (\frac{3}{2}, 2] $, and a sequential conformable fractional boundary value problem (SCFBVP) of order $ \beta \in(\frac{1}{2}, 1] $. By establishing new integral bounds for the Green's functions associated with both problems, we extend the results obtained by Z. Laadjal et al. (Numerical Methods for Partial Differential Equations, 40 (2024), e22760) by applying Rus's fixed point theorems. Furthermore, we establish an existence and uniqueness theorem for the SCFBVP based on the Banach fixed point theorem, which complements their findings. Our results improve their work by relaxing key assumptions and broadening applicability. Finally, we present a detailed numerical comparison between the results herein and the existing results, highlighting the advantages of our approach, followed by concluding remarks.
| [1] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
|
| [2] |
T. Abdeljawad, J. Alzabut, F. Jarad, A generalized Lyapunov-type inequality in the frame of conformable derivativess, Adv. Differ. Equ., 2017 (2017), 321. http://doi.org/10.1186/s13662-017-1383-z doi: 10.1186/s13662-017-1383-z
|
| [3] |
S. Almuthaybiri, Some results on existence and uniqueness of solutions for fractional boundary value problems, J. Math. Comput. Sci.-JM, 40 (2026), 405–414. http://doi.org/10.22436/jmcs.040.03.07 doi: 10.22436/jmcs.040.03.07
|
| [4] |
S. S. Almuthaybiri, C. C. Tisdell, Sharper existence and uniqueness results for solutions to third-order boundary value problems, Math. Model. Anal., 25 (2020), 409–420. https://doi.org/10.3846/mma.2020.11043 doi: 10.3846/mma.2020.11043
|
| [5] |
S. S. Almuthaybiri, C. C. Tisdell, Sharper existence and uniqueness results for solutions to fourth-order boundary value problems and elastic beam analysis, Open Math., 18 (2020), 1006–1024. https://doi.org/10.1515/math-2020-0056 doi: 10.1515/math-2020-0056
|
| [6] |
S. S. Almuthaybiri C. C. Tisdell, Existence and uniqueness of solutions to third-order boundary value problems: analysis in closed and bounded sets, Differ. Equat. Appl., 12 (2020), 291–312. http://doi.org/10.7153/dea-2020-12-19 doi: 10.7153/dea-2020-12-19
|
| [7] |
S. S. Almuthaybiri, A. Zaidi, C. C. Tisdell, Enhanced qualitative understanding of solutions to fractional boundary value problems via alternative fixed-point methods, Axioms, 14 (2025), 592. http://doi.org/10.3390/axioms14080592 doi: 10.3390/axioms14080592
|
| [8] |
S. Aslan, A. O. Akdemir, New estimations for quasi-convex functions and $(h, m)$-convex functions with the help of Caputo-Fabrizio fractional integral operators, Electron. J. Appl. Math., 1 (2023), 38–46. http://doi.org/10.61383/ejam.20231353 doi: 10.61383/ejam.20231353
|
| [9] |
D. Baleanu, S. Qureshi, A. Yusuf, A. Soomro M. S. Osman, Bi-modal COVID-19 transmission with Caputo fractional derivative using statistical epidemic cases, Partial Differential Equations in Applied Mathematics, 10 (2024), 100732. http://doi.org/10.1016/j.padiff.2024.100732 doi: 10.1016/j.padiff.2024.100732
|
| [10] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations integrals, Fund. Math., 3 (1922), 133–181. |
| [11] |
F. P. J. de Barros, M. J. Colbrook, A. S. Fokas, A hybrid analytical-numerical method for solving advection-dispersion problems on a half-line, Int. J. Heat Mass Tran., 139 (2019), 482–491. http://doi.org/10.1016/j.ijheatmasstransfer.2019.05.018 doi: 10.1016/j.ijheatmasstransfer.2019.05.018
|
| [12] |
S. Gala, Q. Liu, M. A. Ragusa, Logarithmically improved regularity criterion for the nematic liquid crystal flows in $\dot{B}^{-1}_{\infty, \infty}$ space, Comput. Math. Appl., 65 (2013), 1738–1745. http://doi.org/10.1016/j.camwa.2013.04.003 doi: 10.1016/j.camwa.2013.04.003
|
| [13] |
W. Haider, H. Budak, A. Shehzadi, F. Hezenci, H. B. Chen, Generalizations Euler-Maclaurin-type inequalities for conformable fractional integrals, Filomat, 39 (2025), 1033–1049. https://doi.org/10.2298/FIL2503033H doi: 10.2298/FIL2503033H
|
| [14] | O. Hölder's, Über einen Mittelwertsatz, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Göttingen, 1889, 38–47. |
| [15] |
H. Kara, H. Budak, S. Etemad, S. Rezapour, H. Ahmad, M. A. Kaabar, A study on the new class of inequalities of midpoint-type and trapezoidal-type based on twice differentiable functions with conformable operators, J. Funct. Space., 2023 (2023), 4624604. http://doi.org/10.1155/2023/4624604 doi: 10.1155/2023/4624604
|
| [16] | W. G. Kelley, A. C. Peterson, The theory of differential equations: classical and qualitative, New York: Springer, 2010. https://doi.org/10.1007/978-1-4419-5783-2 |
| [17] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. http://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
|
| [18] |
M. Khuddush, K. R. Prasad, B. M. B. Krushna, Bootstrapping and fixed point techniques for the existence of solutions to iterative nonlinear elliptic systems, J. Elliptic Parabol. Equ., 11 (2025), 297–322. http://doi.org/10.1007/s41808-025-00320-z doi: 10.1007/s41808-025-00320-z
|
| [19] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Volume 204 (North-Holland mathematics studies), Amsterdam: Elsevier, 2006. |
| [20] |
Z. Laadjal, T. Abdeljawad, F. Jarad, Sharp estimates of the unique solution for two-point fractional boundary value problems with conformable derivative, Numer. Meth. Part. D. E., 40 (2024), e22760. https://doi.org/10.1002/num.22760 doi: 10.1002/num.22760
|
| [21] |
B. Madhubabu, N. Sreedhar, K. R. Prasad, The existence of solutions to higher-order differential equations with nonhomogeneous conditions, Lith. Math. J., 64 (2024), 53–66. http://doi.org/10.1007/s10986-024-09622-6 doi: 10.1007/s10986-024-09622-6
|
| [22] | L. J. Rogers, An extension of a certain theorem in inequalities, Messenger of Math., 17 (1888), 145–150. |
| [23] | I. A. Rus, On a fixed point theorem of Maia, Studia Univ. Babeş-Bolyai Math. 22 (1977), 40–42. |
| [24] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, New York: Gordon and Breach Science Publishers, 1993. |
| [25] |
S. Smirnov, Existence of a unique solution for a third-order boundary value problem with nonlocal conditions of integral type, Nonlinear Anal.-Model., 26 (2021), 914–927. http://doi.org/10.15388/namc.2021.26.23932 doi: 10.15388/namc.2021.26.23932
|
| [26] |
C. P. Stinson, S. S. Almuthaybiri, C. C. Tisdell, A note regarding extensions of fixed point theorems involving two metrics via an analysis of iterated functions, ANZIAM J., 61 (2019), C15–C30. https://doi.org/10.21914/anziamj.v61i0.15048 doi: 10.21914/anziamj.v61i0.15048
|
| [27] |
A. Zaidi, S. Almuthaybiri, Explicit evaluations of subfamilies of the hypergeometric function $ _3{F}_2(1) $ along with specific fractional integrals, AIMS Mathematics, 10 (2025), 5731–5761. https://doi.org/10.3934/math.2025264 doi: 10.3934/math.2025264
|