Research article Special Issues

Asymptotic and oscillation properties of solutions of differential equations in the Canonical case

  • Received: 19 June 2025 Revised: 06 August 2025 Accepted: 12 August 2025 Published: 25 August 2025
  • MSC : 34C10, 34K11

  • The existence of oscillatory solutions to fourth-order differential equations with multiple delays is investigated in this paper. The comparison method and the Riccati method are used to create new oscillation conditions. The results we have got, when compared to some studies in the literature, not only enhance the conditions for the oscillation of the examined equations, but they also expand some of the results that have already been published. Some examples are provided to illustrate the results.

    Citation: Saeed Althubiti. Asymptotic and oscillation properties of solutions of differential equations in the Canonical case[J]. AIMS Mathematics, 2025, 10(8): 19267-19279. doi: 10.3934/math.2025861

    Related Papers:

  • The existence of oscillatory solutions to fourth-order differential equations with multiple delays is investigated in this paper. The comparison method and the Riccati method are used to create new oscillation conditions. The results we have got, when compared to some studies in the literature, not only enhance the conditions for the oscillation of the examined equations, but they also expand some of the results that have already been published. Some examples are provided to illustrate the results.



    加载中


    [1] L. Berezansky, A. Domoshnitsky, R. Koplatadze, Oscillation, stability and asymptotic properties for second and higher order functional differential equations, New York: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9780429321689
    [2] J. K. Hale, Theory of functional differential equations, Berlin/Heidelberg: Springer, 1977.
    [3] J. Dzurina, S. R. Grace, I. Jadlovska, T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
    [4] I. Gyori, G. Ladas, Oscillation theory of delay differential equations: With applications, Oxford: Clarendon Press, 1991. https://doi.org/10.1093/oso/9780198535829.001.0001
    [5] S. R. Grace, Oscillation of certain neutral difference equations of mixed type, J. Math. Anal. Appl., 224 (1998), 241–254. https://doi.org/10.1006/jmaa.1998.6001 doi: 10.1006/jmaa.1998.6001
    [6] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Springer Science & Business Media, 2013.
    [7] M. Braun, Qualitative theory of differential equations, In: Differential equations and their applications, New York, NY: Springer, 1978. https://doi.org/10.1007/978-1-4684-0053-3
    [8] B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2019), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
    [9] S. Althubiti, Second-order nonlinear neutral differential equations with delay term: Novel oscillation theorems, AIMS Math., 10 (2025), 7223–7237. https://doi.org/10.3934/math.2025330 doi: 10.3934/math.2025330
    [10] M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, New oscillation theorems for second-order superlinear neutral differential equations with variable damping terms, Symmetry, 15 (2023), 1630. https://doi.org/10.3390/sym15091630 doi: 10.3390/sym15091630
    [11] F. Masood, S. Aljawi, O. Bazighifan, Novel iterative criteria for oscillatory behavior in nonlinear neutral differential equations, AIMS Math., 10 (2025), 6981–7000. https://doi.org/10.3934/math.2025319 doi: 10.3934/math.2025319
    [12] B. Almarri, A. H. Ali, A. M. Lopes, O. Bazighifan, Nonlinear differential equations with distributed delay: Some new oscillatory solutions, Mathematics, 10 (2022), 995. https://doi.org/10.3390/math10060995 doi: 10.3390/math10060995
    [13] C. G. Philos, Oscillation theorems for linear differential equation of second order, Arch. Math., 53 (1989), 483–492. http://dx.doi.org/10.1007/BF01324723 doi: 10.1007/BF01324723
    [14] S. Althubiti, Nonlinear third-order differential equations with distributed delay: Some new oscillatory solutions, J. King Saud Univ. Sci., 35 (2023), 102730. https://doi.org/10.1016/j.jksus.2023.102730 doi: 10.1016/j.jksus.2023.102730
    [15] J. R. Graef, S. R. Grace, E. Tun, Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term, Opusc. math., 39 (2019), 3947. https://doi.org/10.7494/OpMath.2019.39.1.39 doi: 10.7494/OpMath.2019.39.1.39
    [16] G. Xing, T. Li, C. Zhang, Oscillation of higher-order quasi-linear neutral differential equations, Adv. Differ. Equ., 2011 (2011), 45. https://doi.org/10.1186/1687-1847-2011-45 doi: 10.1186/1687-1847-2011-45
    [17] Z. G. Luo, L. P. Luo. New criteria for oscillation of damped fractional partial differential equations, Math. Model. Control, 2 (2022), 219227. https://doi.org/10.3934/mmc.2022021 doi: 10.3934/mmc.2022021
    [18] T. X. Li, Y. V. Rogovchenko. On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. https://doi.org/10.1016/j.aml.2020.106293 doi: 10.1016/j.aml.2020.106293
    [19] S. R. Grace, J. Dzurina, I. Jadlovska, T. Li, On the oscillation of fourth-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 118. https://doi.org/10.1186/s13662-019-2060-1 doi: 10.1186/s13662-019-2060-1
    [20] C. Zhang, T. Li, S. Saker, Oscillation of fourth-order delay differential equations, J. Math. Sci., 201 (2014), 296–308. https://doi.org/10.1007/s10958-014-1990-0 doi: 10.1007/s10958-014-1990-0
    [21] B. Baculikova, J. Dzurina, J. R. Graef, On the oscillation of higher-order delay differential equations, Math. Slovaca, 187 (2012), 387–400. https://doi.org/10.1007/s10958-012-1071-1 doi: 10.1007/s10958-012-1071-1
    [22] O. Moaaz, P. Kumam, O. Bazighifan, On the oscillatory behavior of a class of fourth-order nonlinear differential equation, Symmetry, 12 (2020), 524. https://doi.org/10.3390/sym12040524 doi: 10.3390/sym12040524
    [23] E. M. Elabbasy, E. Thandpani, O. Moaaz, O. Bazighifan, Oscillation of solutions to fourth-order delay differential equations with middle term, Open J. Math. Sci., 3 (2019), 191–197. https://www.doi.org/10.30538/oms2019.0062 doi: 10.30538/oms2019.0062
    [24] O. Bazighifan, A. H. Ali, F. Mofarreh, Y. N. Raffoul, Extended approach to the asymptotic behavior and symmetric solutions of advanced differential equations, Symmetry, 14 (2022), 686. https://doi.org/10.3390/sym14040686 doi: 10.3390/sym14040686
    [25] I. T. Kiguradze, T. A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Springer Dordrecht, 1993. https://doi.org/10.1007/978-94-011-1808-8
    [26] O. Bazighifan, M. Postolache, Improved conditions for oscillation of functional nonlinear differential equations, Mathematics, 8 (2020), 552. https://doi.org/10.3390/math8040552 doi: 10.3390/math8040552
    [27] C. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delay, Arch. Math., 36 (1981), 168–178. https://doi.org/10.1007/BF01223686 doi: 10.1007/BF01223686
    [28] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, USA, New York: Marcel Dekker, 1987.
    [29] R. Agarwal, S. L. Shieh, C. C. Yeh, Oscillation criteria for second order retard differential equations, Math. Comput. Model., 26 (1997), 1–11. https://doi.org/10.1016/S0895-7177(97)00141-6 doi: 10.1016/S0895-7177(97)00141-6
    [30] C. G. Philos, Oscillation theorems for linear differential equation of second order, Arch. Math., 53 (1989), 483–492. https://doi.org/10.1007/BF01324723 doi: 10.1007/BF01324723
    [31] E. Hille, Non-oscillation theorems, T. Am. Math. Soc., 64 (1948), 234–253.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(335) PDF downloads(34) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog