Research article

Attracting sets in sup-norms for mild solutions of impulsive-perturbed parabolic semilinear problems

  • Received: 15 April 2025 Revised: 11 August 2025 Accepted: 18 August 2025 Published: 22 August 2025
  • MSC : 35B41, 35K58, 37L30, 34A37, 35B40

  • In this paper, we investigate the qualitative behavior of an evolutionary problem that consists of a semilinear parabolic equation whose trajectories undergo instantaneous impulsive perturbations at the moments when some integral functional reaches a certain threshold value. The key object is the uniform attractor of the corresponding impulsive infinite-dimensional dynamical system. The novelty of this study is the analysis of mild solutions in the phase space of continuous functions. Under general assumptions on the impulsive parameters, we prove that this problem generates an impulsive dynamical system, and its trajectories have a compact uniform attractor with respect to the supremum norm (sup-norm).

    Citation: Oleksiy Kapustyan, Svetlana Temesheva, Agila Tleulessova. Attracting sets in sup-norms for mild solutions of impulsive-perturbed parabolic semilinear problems[J]. AIMS Mathematics, 2025, 10(8): 19173-19188. doi: 10.3934/math.2025857

    Related Papers:

  • In this paper, we investigate the qualitative behavior of an evolutionary problem that consists of a semilinear parabolic equation whose trajectories undergo instantaneous impulsive perturbations at the moments when some integral functional reaches a certain threshold value. The key object is the uniform attractor of the corresponding impulsive infinite-dimensional dynamical system. The novelty of this study is the analysis of mild solutions in the phase space of continuous functions. Under general assumptions on the impulsive parameters, we prove that this problem generates an impulsive dynamical system, and its trajectories have a compact uniform attractor with respect to the supremum norm (sup-norm).



    加载中


    [1] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995. https://doi.org/10.1142/2892
    [2] R. Goebel, R. G. Sanfelice, A. R. Teel, Hybrid dynamical systems: modeling, stability, and robustness, Princtone University Press, 2012. https://doi.org/10.23943/princeton/9780691153896.001.0001
    [3] S. K. Kaul, Stability and asymptotic stability in impulsive semidynamical systems, J. Appl. Math. Stochastic Anal., 7 (1994), 509–523. http://doi.org/10.1155/s1048953394000390 doi: 10.1155/s1048953394000390
    [4] A. D. Myshkis, Heat conductivity with self-regulated pulse maintenance, Autom. Remote Control, 56 (1995), 179–186.
    [5] V. Lakshmikantham, D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989. http://doi.org/10.1142/0906
    [6] M. U. Akhmet, Perturbations and Hopf bifurcation of the planar discontinuous dynamical system, Nonlinear Anal., 60 (2005), 163–178. http://doi.org/10.1016/S0362-546X(04)00347-5 doi: 10.1016/S0362-546X(04)00347-5
    [7] K. Ciesielski, On stability in impulsive dynamical systems, Bull. Polish Academy Sci. Math., 52 (2004), 81–91.
    [8] E. M. Bonotto, M. Federson, Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems, J. Differ. Equations, 244 (2008), 2334–2349. http://doi.org/10.1016/j.jde.2008.02.007 doi: 10.1016/j.jde.2008.02.007
    [9] E. M. Bonotto, Flows of characteristic $0^+$ in impulsive semidynamical systems, J. Math. Anal. Appl., 332 (2007), 81–96. http://doi.org/10.1016/j.jmaa.2006.09.076 doi: 10.1016/j.jmaa.2006.09.076
    [10] K. Shah, I. Ahmad, J. J. Nieto, G. U. Rahman, T. Abdeljawad, Qualitative investigation of nonlinear fractional coupled pantograph impulsive differential equations, Qual. Theory Dyn. Syst., 21 (2022), 131. http://doi.org/10.1007/s12346-022-00665-z doi: 10.1007/s12346-022-00665-z
    [11] T. Abdeljawad, K. Shah, M. S. Abdo, F. Jarad, An analytical study of fractional delay impulsive implicit systems with Mittag-Leffler law, Appl. Comput. Math., 22 (2023), 31–44. http://doi.org/10.30546/1683-6154.22.1.2023.31 doi: 10.30546/1683-6154.22.1.2023.31
    [12] J. C. Robinson, Infinite-dimensional dynamical systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001.
    [13] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2 Eds., Springer, 1997. http://doi.org/10.1007/978-1-4612-0645-3
    [14] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, American Mathematical Society, 2002.
    [15] E. M. Bonotto, M. C. Bortolan, A. N. Carvalho, R. Czaja, Global attractors for impulsive dynamical systems – a precompact approach, J. Differ. Equations, 259 (2015), 2602–2625. http://doi.org/10.1016/j.jde.2015.03.033 doi: 10.1016/j.jde.2015.03.033
    [16] S. Dashkovskiy, O. Kapustyan, Y. Perestyuk, Stability of uniform attractors of impulsive multi-valued semiflows, Nonlinear Anal., 40 (2021), 101025. http://doi.org/10.1016/j.nahs.2021.101025 doi: 10.1016/j.nahs.2021.101025
    [17] S. Dashkovskiy, O. A. Kapustian, O. V. Kapustyan, N. V. Gorban, Attractors for multivalued impulsive systems: existence and applications to reaction-diffusion system, Math. Probl. Eng., 2021 (2021), 7385450. http://doi.org/10.1155/2021/7385450 doi: 10.1155/2021/7385450
    [18] O. V. Kapustyan, M. O. Perestyuk, Global attractors in impulsive infinite-dimensional systems, Ukr. Math. J., 68 (2016), 583–598. http://doi.org/10.1007/s11253-016-1243-0 doi: 10.1007/s11253-016-1243-0
    [19] O. V. Kapustyan, O. A. Kapustian, I. Korol, B. Rubino, Uniform attractor of impulse-perturbed reaction-diffusion system, Math. Mech. Complex Syst., 11 (2023), 45–55. http://doi.org/10.2140/memocs.2023.11.45 doi: 10.2140/memocs.2023.11.45
    [20] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44, Springer, 1983. http://doi.org/10.1007/978-1-4612-5561-1
    [21] P. Feketa, O. V. Kapustyan, O. A. Kapustian, I. Korol, Global attractors of mild solutions semiflow for semilinear parabolic equation without uniqueness, Appl. Math. Lett., 135(2022), 108435. http://doi.org/10.1016/j.aml.2022.108435 doi: 10.1016/j.aml.2022.108435
    [22] O. Kapustyan, O. Kapustian, I. Korol, B. Rubino, Attracting sets of impulse-perturbed heat equation in the space of continuous functions, Miskolc Math. Notes, 25 (2024), 317–327. https://doi.org/10.18514/MMN.2024.4213 doi: 10.18514/MMN.2024.4213
    [23] J. Valero, A weak comparison principle for reaction-diffusion systems, J. Funct. Spaces, 2012 (2012), 679465. http://doi.org/10.1155/2012/679465 doi: 10.1155/2012/679465
    [24] S. Dashkovskiy, P. Feketa, Asymptotic properties of Zeno solutions, Nonlinear Anal., 30 (2018), 256–265. http://doi.org/10.1016/j.nahs.2018.06.005 doi: 10.1016/j.nahs.2018.06.005
    [25] A. Haraux, Nonlinear evolution equations-global behavior of solutions, Vol. 841, Springer, 1981. http://doi.org/10.1007/bfb0089606
    [26] J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), 370–373. http://doi.org/10.1090/S0002-9939-1977-0442748-6 doi: 10.1090/S0002-9939-1977-0442748-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(364) PDF downloads(34) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog