Research article Special Issues

Sparse control in microscopic and mean-field leader-follower models

  • Received: 16 March 2025 Revised: 05 June 2025 Accepted: 17 June 2025 Published: 22 August 2025
  • MSC : 93C10, 34D05, 49K20, 37N40, 82C22

  • This work investigates the decay properties of Lyapunov functions in leader-follower systems seen as a sparse control framework. Starting with a microscopic representation, we establish conditions under which the total Lyapunov function, encompassing both leaders and followers, is decaying. The analysis is extended to a hybrid setting combining a mean-field description for followers and a microscopic model for leaders. We identify sufficient conditions on control gain and interaction strengths that guarantee stabilization of the linear system towards a target state. The results highlight the influence of sparse control and interaction parameters in achieving coordinated behavior in multi-agent systems.

    Citation: Melanie Harms, Michael Herty, Chiara Segala, Eva Zerz. Sparse control in microscopic and mean-field leader-follower models[J]. AIMS Mathematics, 2025, 10(8): 19147-19172. doi: 10.3934/math.2025856

    Related Papers:

  • This work investigates the decay properties of Lyapunov functions in leader-follower systems seen as a sparse control framework. Starting with a microscopic representation, we establish conditions under which the total Lyapunov function, encompassing both leaders and followers, is decaying. The analysis is extended to a hybrid setting combining a mean-field description for followers and a microscopic model for leaders. We identify sufficient conditions on control gain and interaction strengths that guarantee stabilization of the linear system towards a target state. The results highlight the influence of sparse control and interaction parameters in achieving coordinated behavior in multi-agent systems.



    加载中


    [1] N. Bellomo, P. Degond, E. Tadmor, Modeling and simulation in science, engineering and technology, In: Active particles, Volume 1, Berlin: Birkhäuser Cham, 2017. https://doi.org/10.1007/978-3-319-49996-3
    [2] N. Bellomo, P. Degond, E. Tadmor, Modeling and simulation in science, engineering and technology, In: Active particles, Volume 2, Berlin: Birkhäuser Cham, 2019.
    [3] E. Cristiani, B. Piccoli, A. Tosin, Modeling, simulation and applications, In: Multiscale modeling of pedestrian dynamics, Switzerland: Springer, 2014. https://doi.org/10.1007/978-3-319-06620-2
    [4] M. Herty, C. Ringhofer, Consistent mean field optimality conditions for interacting agent systems, Commun. Math. Sci., 17 (2019), 1095–1108. https://doi.org/10.4310/CMS.2019.v17.n4.a12 doi: 10.4310/CMS.2019.v17.n4.a12
    [5] A. Seguret, Mean field approximation of an optimal control problem for the continuity equation arising in smart charging, Appl. Math. Optim., 88 (2023), 79. https://doi.org/10.1007/s00245-023-10054-w doi: 10.1007/s00245-023-10054-w
    [6] M. Burger, R. Pinnau, C. Totzeck, O. Tse, Mean-field optimal control and optimality conditions in the space of probability measures, SIAM J. Control Optim., 59 (2021), 977–1006. https://doi.org/10.1137/19M1249461 doi: 10.1137/19M1249461
    [7] M. Fornasier, S. Lisini, C. Orrieri, G. Savare, Mean-field optimal control as gamma-limit of finite agent controls, European J. Appl. Math., 30 (2019), 1153–1186. https://doi.org/10.1017/s0956792519000044 doi: 10.1017/s0956792519000044
    [8] M. Burger, R. Pinnau, C. Totzeck, O. Tse, A. Roth, Instantaneous control of interacting particle systems in the mean-field limit, J. Comput. Phys., 405 (2020), 109181. https://doi.org/10.1016/j.jcp.2019.109181 doi: 10.1016/j.jcp.2019.109181
    [9] G. Albi, M. Herty, L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Commun. Math. Sci., 13 (2015), 1407–1429. https://doi.org/10.4310/CMS.2015.v13.n6.a3 doi: 10.4310/CMS.2015.v13.n6.a3
    [10] Y. P. Choi, D. Kalise, J. Peszek, A. A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), 1954–1981. https://doi.org/10.1137/19M1241799 doi: 10.1137/19M1241799
    [11] G. Albi, M. Herty, D. Kalise, C. Segala, Moment-driven predictive control of mean-field collective dynamics, SIAM J. Control Optim., 60 (2022), 814–841. https://doi.org/10.1137/21M1391559 doi: 10.1137/21M1391559
    [12] G. Albi, F. Ferrarese, Kinetic description of swarming dynamics with topological interaction and transient leaders, Multiscale Model. Simul., 22 (2024), 1169–1195. https://doi.org/10.1137/23M1588615 doi: 10.1137/23M1588615
    [13] M. Bongini, M. Fornasier, Sparse stabilization of dynamical systems driven by attraction and avoidance forces, Netw. Heterog. Media, 9 (2014), 1–31. https://doi.org/10.3934/nhm.2014.9.1 doi: 10.3934/nhm.2014.9.1
    [14] G. Albi, L. Pareschi, M. Zanella, Boltzmann-type control of opinion consensus through leaders, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20140138. https://doi.org/10.1098/rsta.2014.0138 doi: 10.1098/rsta.2014.0138
    [15] M. Fornasier, B. Piccoli, F. Rossi, Mean-field sparse optimal control, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130400. https://doi.org/10.1098/rsta.2013.0400 doi: 10.1098/rsta.2013.0400
    [16] E. Zerz, M. Herty, Collision-free dynamical systems, IFAC PapersOnLine, 52 (2019), 72–76.
    [17] M. Harms, S. Bamberger, E. Zerz, M. Herty, On d-collision-free dynamical systems, IFAC PapersOnLine, 55 (2022), 25–30.
    [18] E. D. Sontag, Mathematical control theory, New York: Springer-Verlag, 1998. https://doi.org/10.1007/978-1-4612-0577-7
    [19] J. A. Canizo, J. A. Carrillo, J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Meth. Appl. Sci., 21 (2011), 515–539. https://doi.org/10.1142/S0218202511005239 doi: 10.1142/S0218202511005239
    [20] J. A. Carrillo, Y. P. Choi, M. Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances, In: Collective dynamics from bacteria to crowds, Vienna: Springer, 2014. https://doi.org/10.1007/978-3-7091-1785-9_1
    [21] J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic cucker-smale model, SIAM J. Math. Anal., 42 (2010), 218–236. https://doi.org/10.1137/080732502 doi: 10.1137/080732502
    [22] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842
    [23] G. Albi, L. Pareschi, Binary interaction algorithms for the simulation of flocking and swarming dynamics, Multiscale Model. Simul., 11 (2013), 1–29. https://doi.org/10.1137/120868748 doi: 10.1137/120868748
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(330) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog