Research article

Some properties of Bazilevič harmonic functions

  • Received: 18 March 2025 Revised: 05 June 2025 Accepted: 08 August 2025 Published: 20 August 2025
  • MSC : 30C45, 30C50, 30C62

  • In the paper, a new class of Bazilevič harmonic functions is introduced. First, the sufficient and necessary conditions and integral expressions of the class are proved by the subordination relationship and the basic theory of harmonic functions. Then, the inclusion relation and radius problems are explored, yielding intriguing new findings.

    Citation: Shuhai Li, Lina Ma, Xiaomeng Niu, Huo Tang. Some properties of Bazilevič harmonic functions[J]. AIMS Mathematics, 2025, 10(8): 18824-18837. doi: 10.3934/math.2025841

    Related Papers:

  • In the paper, a new class of Bazilevič harmonic functions is introduced. First, the sufficient and necessary conditions and integral expressions of the class are proved by the subordination relationship and the basic theory of harmonic functions. Then, the inclusion relation and radius problems are explored, yielding intriguing new findings.



    加载中


    [1] P. L. Duren, Univalent functions, New York: Springer-Verlag, 1983.
    [2] I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb., 79 (1955), 471–476.
    [3] R. Singh, On Bazilevič functions, P. Am. Math. Soc., 38 (1973), 261–271. http://dx.doi.org/10.1090/S0002-9939-1973-0311887-9 doi: 10.1090/S0002-9939-1973-0311887-9
    [4] M. S. Liu, The radius of univalence for certain class of analytic functions, In: Boundary Value Problems, Integral Equations and Related Problems, Singapore: World Scientific Publishing, 2000,122–128.
    [5] J. Clunie, T. S. Small, Harmonic univalent functions, Fenn. Math., 9 (1984), 3–25. https://doi.org/10.5186/aasfm.1984.0905 doi: 10.5186/aasfm.1984.0905
    [6] P. Duren, Harmonic mappings in the plane, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511546600
    [7] B. K. Chinhara, P. Gochhayat, S. Maharana, On certain harmonic mappings with some fixed coefficients, Monatsh. Math., 190 (2019), 261–280. https://doi.org/10.1007/s00605-018-1228-1 doi: 10.1007/s00605-018-1228-1
    [8] D. Klimek-Smȩt, A. Michalski, Univalent anti-analytic perturbations of convex analytic mappings in the unit disc, Ann. Univ. Mariae Curie-Skłodowsk, 61 (2007), 39–49.
    [9] S. S. Miller, P. T. Mocanu, Differential subordination and univalent functions, Mich. Math. J., 28 (1981), 157–171. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507
    [10] F. G. Avkhadiev, K. J. Wirths, Schwarz-Pick type inequalities, Frontiers in Mathematics, Basel, Boston, Berlin: Birkhauser Verlag AG, 2009. https://doi.org/10.1007/978-3-0346-0000-2
    [11] S. D. Bernardi, New distortion theorems for functions of positive real part and applications to partial sums of univalent convex functions, P. Am. Math. Soc., 45 (1974), 113–118. https://doi.org/10.1090/s0002-9939-1974-0357755-9 doi: 10.1090/s0002-9939-1974-0357755-9
    [12] W. C. Ma, On $\alpha$-convex functions of order $\beta$, Acta Math. Sin., 29 (1986), 207–212.
    [13] S. Kanas, S. Maharana, J. K. Prajapat, Norm of the pre-Schwarzian derivative, Blochs constant and coefficient bounds in some classes of harmonic mappings, J. Math. Anal. Appl., 474 (2019), 931–943. https://doi.org/10.1016/j.jmaa.2019.01.080 doi: 10.1016/j.jmaa.2019.01.080
    [14] S. I. Kanas, D. Klimek-Smet, Harmonic mappings related to functions with bounded boundary rotation and norm of the pre-Schwarzian derivative, B. Korean Math. Soc., 51 (2014), 803–812. https://doi.org/10.4134/bkms.2014.51.3.803 doi: 10.4134/bkms.2014.51.3.803
    [15] Y. Polatoǧlu, A. Şen, Some results on subclasses of Janowski $\lambda$-spirallike functions of complex order, Gen. Math., 51 (2007), 88–97.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(269) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog