Research article Special Issues

Dynamic evolution sequence set-assisted machine tool interval analysis

  • These authors contributed equally to this work and are co-first authors
  • Received: 09 April 2025 Revised: 01 July 2025 Accepted: 15 July 2025 Published: 19 August 2025
  • MSC : 65C05, 74P10, 90C29

  • This paper investigates the uncertainty of machine tools and proposes an efficient interval uncertainty analysis framework for machine tools. This problem involves interval analysis and the calculation of machine tool response. The traditional analysis method has drawbacks, including low computational efficiency and the need to collect a large amount of sample information. In this paper, the intelligent optimization algorithm is used to analyze the interval of the machine tool, and the interval analysis results can be obtained by using less sample information, which improves the efficiency of the interval analysis. The dynamic evolution sequence (DES) is used to optimize the search sequence of the artificial bee colony (ABC) algorithm to improve the computational efficiency and accuracy of the optimization algorithm. To address the problem of the high computational cost of the finite element model, the Kriging surrogate model is used to replace complex finite element calculations. To achieve better calculation accuracy, this paper utilizes the DES to optimize the Kriging model, resulting in a significant improvement in the calculation accuracy of the improved Kriging model (DES-Kriging). Combining DES-ABC and DES-Kriging, this paper proposes a new interval uncertainty analysis framework and verifies the accuracy and efficiency of this interval analysis framework by numerical experiments.

    Citation: Xindi Wei, Jin Deng, Shizhong Liang, Yu Ye. Dynamic evolution sequence set-assisted machine tool interval analysis[J]. AIMS Mathematics, 2025, 10(8): 18801-18823. doi: 10.3934/math.2025840

    Related Papers:

  • This paper investigates the uncertainty of machine tools and proposes an efficient interval uncertainty analysis framework for machine tools. This problem involves interval analysis and the calculation of machine tool response. The traditional analysis method has drawbacks, including low computational efficiency and the need to collect a large amount of sample information. In this paper, the intelligent optimization algorithm is used to analyze the interval of the machine tool, and the interval analysis results can be obtained by using less sample information, which improves the efficiency of the interval analysis. The dynamic evolution sequence (DES) is used to optimize the search sequence of the artificial bee colony (ABC) algorithm to improve the computational efficiency and accuracy of the optimization algorithm. To address the problem of the high computational cost of the finite element model, the Kriging surrogate model is used to replace complex finite element calculations. To achieve better calculation accuracy, this paper utilizes the DES to optimize the Kriging model, resulting in a significant improvement in the calculation accuracy of the improved Kriging model (DES-Kriging). Combining DES-ABC and DES-Kriging, this paper proposes a new interval uncertainty analysis framework and verifies the accuracy and efficiency of this interval analysis framework by numerical experiments.



    加载中


    [1] S. J. Guo, G. D. Jiang, X. S. Mei, Investigation of sensitivity analysis and compensation parameter optimization of geometric error for five-axis machine tool, Int. J. Adv. Manuf. Technol., 93 (2017), 3229–3243. https://doi.org/10.1007/s00170-017-0755-6 doi: 10.1007/s00170-017-0755-6
    [2] Q. Cheng, W. D. Ren, Z. F. Liu, D. J. Chen, P. H. Gu, Load-induced error identification of hydrostatic turntable and its influence on machining accuracy, J. Cent. South Univ., 23 (2016), 2558–2569. https://doi.org/10.1007/s11771-016-3317-4 doi: 10.1007/s11771-016-3317-4
    [3] D. Zhang, L. H. Wang, Z. Gao, X. P. Su, On performance enhancement of parallel kinematic machine, J. Intell. Manuf., 24 (2013), 267–276. https://doi.org/10.1007/s10845-011-0583-8 doi: 10.1007/s10845-011-0583-8
    [4] H. L. Fang, T. F. Tang, Z. He, Y. C. Liu, J. Zhang, A novel hybrid machine tool integrating a symmetrical redundantly actuated parallel mechanism: design, kinematics, prototype and experiment, Mech. Mach. Theory., 176 (2022), 105013. https://doi.org/10.1016/j.mechmachtheory.2022.105013 doi: 10.1016/j.mechmachtheory.2022.105013
    [5] L. Li, Q. Q. Yun, Z. Q. Li, Y. Liu, C. Y. Cao, A new contact model of joint surfaces accounting for surface waviness and substrate deformation, Int. J. Appl. Mech., 11 (2019), 1950079. https://doi.org/10.1142/S1758825119500790 doi: 10.1142/S1758825119500790
    [6] M. Burdekin, N. Back, A. Cowley, Analysis of the local deformations in machine joints, Journal of Mechanical Engineering Science, 21 (1979), 25–32.
    [7] F. Wu, D. W. Huang, X. M. Xu, K. Zhao, N. Zhou, An adaptive divided-difference perturbation method for solving stochastic problems, Struct. Saf., 103 (2023), 102346. https://doi.org/10.1016/j.strusafe.2023.102346 doi: 10.1016/j.strusafe.2023.102346
    [8] F. Wu, W. X. Zhong, A hybrid approach for the time domain analysis of linear stochastic structures, Comput. Method. Appl. M., 265 (2013), 71–82. https://doi.org/10.1016/j.cma.2013.06.006 doi: 10.1016/j.cma.2013.06.006
    [9] D. W. Huang, F. Wu, S. Zhang, B. S. Chen, H. W. Zhang, A high-performance calculation scheme for stochastic dynamic problems, Mech. Syst. Signal Pr., 189 (2023), 110073. https://doi.org/10.1016/j.ymssp.2022.110073 doi: 10.1016/j.ymssp.2022.110073
    [10] D. W. Huang, F. Wu, Y. L. Zhao, J. Yan, H. W. Zhang, Application of high-credible statistical results calculation scheme based on least squares Quasi-Monte Carlo method in multimodal stochastic problems, Comput. Method. Appl. M., 418 (2024), 116576. https://doi.org/10.1016/j.cma.2023.116576 doi: 10.1016/j.cma.2023.116576
    [11] X. -X. Liu, Q. -Z. Xie, R. -J. Du, F. Zhang, Real-world engineering problems: Two surrogate methods for robust vibration control of moving mass-beam coupling systems with epistemic uncertainty, Aerosp. Sci. Technol., 130 (2022), 107916. https://doi.org/10.1016/j.ast.2022.107916 doi: 10.1016/j.ast.2022.107916
    [12] M. A. Hariri-Ardebili, B. Sudret, Polynomial chaos expansion for uncertainty quantification of dam engineering problems, Eng. Struct., 203 (2020), 109631. https://doi.org/10.1016/j.engstruct.2019.109631 doi: 10.1016/j.engstruct.2019.109631
    [13] D. Yuan, Q. Wan, D. Wang, Influence of bolt preload degradation on nonlinear vibration responses of jointed structures, J. Sound Vib., 595 (2025), 118797. https://doi.org/10.1016/j.jsv.2024.118797 doi: 10.1016/j.jsv.2024.118797
    [14] W. J. Pan, X. P. Li, L. L. Wang, N. Guo, Z. M. Yang, Influence of contact stiffness of joint surfaces on oscillation system based on the fractal theory, Arch. Appl. Mech., 88 (2018), 525–541. https://doi.org/10.1007/s00419-017-1325-y doi: 10.1007/s00419-017-1325-y
    [15] Z. X. Wang, Y. Q. Wang, G. X. Zhang, Y. J. Shi, Tests and parametric analysis of aluminum alloy bolted joints of different material types, Constr. Build. Mater., 185 (2018), 589–599. https://doi.org/10.1016/j.conbuildmat.2018.07.062 doi: 10.1016/j.conbuildmat.2018.07.062
    [16] R. B. Patil, M. A. Mellal, A. K. Bewoor, S. Al-Dahidi, Reliability, maintainability, and availability analysis of a computerized numerical control machine tool using Markov chains, Acta Polytech. Hung., 18 (2021), 45–70. https://doi.org/10.12700/APH.18.6.2021.6.3 doi: 10.12700/APH.18.6.2021.6.3
    [17] X. Du, J. L. Huo, L. Chen, M. C. Wang, Z. S. Wu, C. L. Zhang, Application of intelligent optimization algorithms in the distribution network planning and evaluation models, Procedia Computer Science, 228 (2023), 1205–1214. https://doi.org/10.1016/j.procs.2023.11.106 doi: 10.1016/j.procs.2023.11.106
    [18] F. Wu, L. Zhu, Y. L. Zhao, C. F. Ai, X. Wang, F. Cai, et al., Wave spectrum fitting with multiple parameters based on optimization algorithms and its application, Ocean Eng., 312 (2024), 119073. https://doi.org/10.1016/j.oceaneng.2024.119073 doi: 10.1016/j.oceaneng.2024.119073
    [19] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical Report-Tr06, Erciyes University, (2005), http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf
    [20] H. B. Zhao, M. Zhao, C. X. Zhu, Reliability-based optimization of geotechnical engineering using the artificial bee colony algorithm, KSCE J. Civ. Eng., 20 (2016), 1728–1736. https://doi.org/10.1007/s12205-015-0117-6 doi: 10.1007/s12205-015-0117-6
    [21] S. N. Shivappriya, T. Gowrishankar, G. Stoian, J. Anitha, D. J. Hemanth, Enhancing performance of parallel hybrid electric vehicles using Powell's artificial bee colony method, Heliyon, 11 (2025), e42325. https://doi.org/10.1016/j.heliyon.2025.e42325 doi: 10.1016/j.heliyon.2025.e42325
    [22] Y. B. Cui, W. Hu, A. Rahmani, Fractional-order artificial bee colony algorithm with application in robot path planning, Eur. J. Oper. Res., 306 (2023), 47–64. https://doi.org/10.1016/j.ejor.2022.11.007 doi: 10.1016/j.ejor.2022.11.007
    [23] Y. L. Zhao, F. Wu, J. H. Pang, W. X. Zhong, New heterogeneous comprehensive learning particle swarm optimizer enhanced with low-discrepancy sequences and conjugate gradient method, Swarm Evol. Comput., 93 (2025) 101848. https://doi.org/10.1016/j.swevo.2025.101848
    [24] F. De Rainville, C. Gagné, O. Teytaud, D. Laurendeau, Evolutionary optimization of low-discrepancy sequences, ACM T. Model. Comput. S., 22 (2012), 1–25. https://doi.org/10.1145/2133390.2133393 doi: 10.1145/2133390.2133393
    [25] F. Wu, Y. L. Zhao, K. Zhao, W. X. Zhong, A multi-body dynamical evolution model for generating the point set with best uniformity, Swarm Evol. Comput., 73 (2022), 101121. https://doi.org/10.1016/j.swevo.2022.101121 doi: 10.1016/j.swevo.2022.101121
    [26] F. Wu, W. X. Zhong, A modified stochastic perturbation method for stochastic hyperbolic heat conduction problems, Comput. Method. Appl. M., 305 (2016), 739–758, https://doi.org/10.1016/j.cma.2016.03.032 doi: 10.1016/j.cma.2016.03.032
    [27] F. Wu, W. X. Zhong, On displacement shallow water wave equation and symplectic solution, Comput. Method. Appl. M., 318 (2017), 431–455. https://doi.org/10.1016/j.cma.2017.01.040 doi: 10.1016/j.cma.2017.01.040
    [28] F. A. C. Viana, C. Gogu, T. Goel, Surrogate modeling: tricks that endured the test of time and some recent developments, Struct. Multidisc. Optim., 64 (2021), 2881–2908. https://doi.org/10.1007/s00158-021-03001-2 doi: 10.1007/s00158-021-03001-2
    [29] C. L. He, Y. Zhang, D. W. Gong, X. F. Ji, A review of surrogate-assisted evolutionary algorithms for expensive optimization problems, Expert Syst. Appl., 217 (2023), 119495. https://doi.org/10.1016/j.eswa.2022.119495 doi: 10.1016/j.eswa.2022.119495
    [30] Z. Azarhoosh, M. I. Ghazaan, A review of recent advances in surrogate models for uncertainty quantification of high-dimensional engineering applications, Comput. Method. Appl. M., 433 (2025), 117508. https://doi.org/10.1016/j.cma.2024.117508 doi: 10.1016/j.cma.2024.117508
    [31] X. H. Peng, J. Q. Kou, W. W. Zhang, Multi-fidelity nonlinear unsteady aerodynamic modeling and uncertainty estimation based on Hierarchical Kriging, Appl. Math. Model., 122 (2023), 1–21. https://doi.org/10.1016/j.apm.2023.05.031 doi: 10.1016/j.apm.2023.05.031
    [32] A. Thapa, A. Roy, S. Chakraborty, Reliability analysis of underground tunnel by a novel adaptive Kriging based metamodeling approach, Probabilist. Eng. Mech., 70 (2022), 103351. https://doi.org/10.1016/j.probengmech.2022.103351 doi: 10.1016/j.probengmech.2022.103351
    [33] J. Kudela, R. Matousek, Recent advances and applications of surrogate models for finite element method computations: a review, Soft Comput., 26 (2022), 13709–13733. https://doi.org/10.1007/s00500-022-07362-8 doi: 10.1007/s00500-022-07362-8
    [34] Z. P. Qiu, C. Y. Ju, A comparative study of probabilistic and Non-probabilistic models for the stress intensity factors of embedded cracks, Eng. Fract. Mech., 259 (2022), 108105. https://doi.org/10.1016/j.engfracmech.2021.108105 doi: 10.1016/j.engfracmech.2021.108105
    [35] C. Jiang, X. Han, G. Y. Lu, J. Liu, Z. Zhang, Y. C. Bai, Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique, Comput. Method. Appl. M., 200 (2011), 2528–2546. https://doi.org/10.1016/j.cma.2011.04.007 doi: 10.1016/j.cma.2011.04.007
    [36] B. Y. Ni, C. Jiang, Z. L. Huang, Discussions on non-probabilistic convex modelling for uncertain problems, Appl. Math. Model., 59 (2018), 54–85. https://doi.org/10.1016/j.apm.2018.01.026 doi: 10.1016/j.apm.2018.01.026
    [37] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Glob. Optim., 39 (2007), 459–471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x
    [38] E. B. Andres, Kriging, In: Encyclopedia of environmetrics, 2 Eds., New York: John Wiley & Sons, Ltd., 2013. https://doi.org/10.1002/9780470057339.vak003.pub2
    [39] G. Pistone, G. Vicario, Comparing and generating Latin Hypercube designs in Kriging models, AStA Adv. Stat. Anal., 94 ((2010), 353–366. https://doi.org/10.1007/s10182-010-0142-1
    [40] F. Wu, K. Zhao, X. L. Wu, H. J. Peng, L. L. Zhao, W. X. Zhong, A time-averaged method to analyze slender rods moving in tubes, Int. J. Mech. Sci., 279 (2024), 109510. https://doi.org/10.1016/j.ijmecsci.2024.109510 doi: 10.1016/j.ijmecsci.2024.109510
    [41] F. Wu, Y. L. Zhao, Y. X. Yang, X. P. Zhang, N. Zhou, A new discrepancy for sample generation in stochastic response analyses of aerospace problems with uncertain parameters, Chinese J. Aeronaut., 37 (2024), 192–211. https://doi.org/10.1016/j.cja.2024.09.044 doi: 10.1016/j.cja.2024.09.044
    [42] O. Teytaud, S. Gelly, DCMA, yet another derandomization in covariance-matrix-adaptation, In: Proceedings of the 9th annual conference on Genetic and evolutionary computation, New York: Association for Computing Machinery, 2007, 955–963. https://doi.org/10.1145/1276958.1277150
    [43] S. S. Garud, I. A. Karimi, M. Kraft, Design of computer experiments: a review, Comput. Chem. Eng., 106 (2017), 71–95. https://doi.org/10.1016/j.compchemeng.2017.05.010 doi: 10.1016/j.compchemeng.2017.05.010
    [44] G. Ökten, Y. N. Liu, Randomized quasi-Monte Carlo methods in global sensitivity analysis, Reliab. Eng. Syst. Safe., 210 (2021), 107520. https://doi.org/10.1016/j.ress.2021.107520 doi: 10.1016/j.ress.2021.107520
    [45] Karishma, H. Kumar, A new hybrid particle swarm optimizationalgorithm for optimal tasks scheduling in distributed computing system, Intelligent Systems with Applications, 18 (2023), 200219. https://doi.org/10.1016/j.iswa.2023.200219 doi: 10.1016/j.iswa.2023.200219
    [46] B. Sun, W, Li, Y. Huang, Performance of composite PPSO on single objective bound constrained numerical optimization problems of CEC 2022, 2022 IEEE Congress on Evolutionary Computation, Padua, Italy, 2022, 1–8. https://doi.org/10.1109/CEC55065.2022.9870369
    [47] C. Li, X. D. Wei, C. Y. Chen, J. H. Tang, Adaptive time-stepping approach for efficient interval uncertainty analysis of control rod drop dynamics, J. Nonlinear Math. Phys., 32 (2025), 42. https://doi.org/10.1007/s44198-025-00294-5 doi: 10.1007/s44198-025-00294-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(311) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog