Research article

Almost periodic dynamics of fractional-order stochastic Hopfield neural networks with time-varying delays

  • Received: 08 June 2025 Revised: 02 August 2025 Accepted: 11 August 2025 Published: 14 August 2025
  • MSC : 34K14, 34K37, 92B20

  • Although fractional-order stochastic neural networks exhibit rich dynamics, there are currently no research results on their almost periodic dynamics in the sense of distribution. This paper investigated a class of fractional-order stochastic Hopfield neural networks with time-varying delays. By employing the Banach fixed point theorem and inequality techniques, we first established sufficient criteria for the existence and uniqueness of almost periodic solutions in distribution for the considered model. Subsequently, through the application of a generalized Gronwall inequality, the finite-time stability in the mean square sense of this unique almost periodic solution in distribution was rigorously demonstrated. The results obtained in this study are entirely novel. To validate the theoretical findings, a numerical example with explicit parameters was constructed for simulation verification, where computational results exhibit a high degree of consistency with theoretical derivations.

    Citation: Binrong Peng, Yongkun Li. Almost periodic dynamics of fractional-order stochastic Hopfield neural networks with time-varying delays[J]. AIMS Mathematics, 2025, 10(8): 18431-18453. doi: 10.3934/math.2025823

    Related Papers:

  • Although fractional-order stochastic neural networks exhibit rich dynamics, there are currently no research results on their almost periodic dynamics in the sense of distribution. This paper investigated a class of fractional-order stochastic Hopfield neural networks with time-varying delays. By employing the Banach fixed point theorem and inequality techniques, we first established sufficient criteria for the existence and uniqueness of almost periodic solutions in distribution for the considered model. Subsequently, through the application of a generalized Gronwall inequality, the finite-time stability in the mean square sense of this unique almost periodic solution in distribution was rigorously demonstrated. The results obtained in this study are entirely novel. To validate the theoretical findings, a numerical example with explicit parameters was constructed for simulation verification, where computational results exhibit a high degree of consistency with theoretical derivations.



    加载中


    [1] K. Bingi, R. Ibrahim, M. N. Karsiti, S. M. Hassan, V. R. Harindran, Fractional-order systems and PID controllers, New York: Springer, 2020. https://doi.org/10.1007/978-3-030-33934-0
    [2] K. Bingi, P. A. M. Devan, B. R. Prusty, Design and analysis of fractional filters with complex orders, In: 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, IEEE, 2021, 1–6. https://doi.org/10.1109/ICEPE50861.2021.9404431
    [3] K. Bingi, R. Ibrahim, M. N. Karsiti, S. M. Hassan, V. R. Harindran, Fractional order pi controllers for real-time control of pressure plant, In: 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), IEEE, 2018,972–977. https://doi.org/10.1109/CoDIT.2018.8394921
    [4] E. Kaslik, S. Sivasundaram, Nonlinear dynamics and chaos in fractional-order neural networks, Neural Networks, 32 (2012), 245–256. https://doi.org/10.1016/j.neunet.2012.02.030 doi: 10.1016/j.neunet.2012.02.030
    [5] A. L. M. Biamou, V. K. Tamba, F. K. Tagne, A. C. N. Takougang, Fractional-order-induced symmetric multi-scroll chaotic attractors and double bubble bifurcations in a memristive coupled Hopfield neural networks, Chaos Soliton. Fract., 178 (2024), 114267. https://doi.org/10.1016/j.chaos.2023.114267 doi: 10.1016/j.chaos.2023.114267
    [6] Y. Zhang, L. Li, J. Huang, S. Gorbachev, R. V. Aravind, Exploration on bifurcation for an incommensurate five-neuron fractional-order BAM neural network involving multiple delays, Physica D, 460 (2024), 134047. https://doi.org/10.1016/j.physd.2023.134047 doi: 10.1016/j.physd.2023.134047
    [7] S. Zhang, Y. Yu, H. Wang, Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Anal.-Hybri., 16 (2015), 104–121. https://doi.org/10.1016/j.nahs.2014.10.001 doi: 10.1016/j.nahs.2014.10.001
    [8] J. Chen, W. Sun, S. Zheng, New predefined-time stability theorem and synchronization of fractional-order memristive delayed BAM neural networks, Commun. Nonlinear Sci., 148 (2025), 108850. https://doi.org/10.1016/j.cnsns.2025.108850 doi: 10.1016/j.cnsns.2025.108850
    [9] H. L. Li, J. Cao, C. Hu, H. Jiang, F. E. Alsaadi, Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks, IEEE T. Neural Networ., 35 (2024), 14178–14189. https://doi.org/10.1109/TNNLS.2023.3274959 doi: 10.1109/TNNLS.2023.3274959
    [10] C. J. Z. Aguilar, J. F. G. Aguilar, V. M. A. Martínez, H. M. R. Ugalde, Fractional order neural networks for system identification, Chaos Soliton. Fract., 130 (2020), 109444. https://doi.org/10.1016/j.chaos.2019.109444 doi: 10.1016/j.chaos.2019.109444
    [11] J. Zhou, D. Li, G. Chen, S. Wen, Projective synchronization for distinct fractional-order neural networks consist of inconsistent orders via sliding mode control, Commun. Nonlinear Sci., 133 (2024), 107986. https://doi.org/10.1016/j.cnsns.2024.107986 doi: 10.1016/j.cnsns.2024.107986
    [12] F. Kheyrinataj, A. Nazemi, Fractional power series neural network for solving delay fractional optimal control problems, Connect. Sci., 32 (2020), 53–80. https://doi.org/10.1080/09540091.2019.1605498 doi: 10.1080/09540091.2019.1605498
    [13] M. Pakdaman, A. Ahmadian, S. Effati, S. Salahshour, D. Baleanu, Solving differential equations of fractional order using an optimization technique based on training artificial neural network, Appl. Math. Comput., 293 (2017), 81–95. https://doi.org/10.1016/j.amc.2016.07.021 doi: 10.1016/j.amc.2016.07.021
    [14] B. P. Chen, Y. Chen, G. Q. Zeng, Q. She, Fractional-order convolutional neural networks with population extremal optimization, Neurocomputing, 477 (2022), 36–45. https://doi.org/10.1016/j.neucom.2022.01.006 doi: 10.1016/j.neucom.2022.01.006
    [15] M. Maiti, M. Sunder, R. Abishek, K. Bingi, N. B. Shaik, W. Benjapolakul, Recent advances and applications of fractional-order neural networks, Eng. J., 26 (2022), 49–67. https://doi.org/10.4186/ej.2022.26.7.49 doi: 10.4186/ej.2022.26.7.49
    [16] X. Song, S. Song, B. Li, I. T. Balsera, Adaptive projective synchronization for time-delayed fractional-order neural networks with uncertain parameters and its application in secure communications, T. I. Meas. Control, 40 (2018), 3078–3087. https://doi.org/10.1177/0142331217714523 doi: 10.1177/0142331217714523
    [17] M. Roohi, C. Zhang, Y. Chen, Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography, Nonlinear Dynam., 100 (2020), 3979–4001. https://doi.org/10.1007/s11071-020-05719-y doi: 10.1007/s11071-020-05719-y
    [18] C. Ma, J. Mou, F. Yang, H. Yan, A fractional-order hopfield neural network chaotic system and its circuit realization, Eur. Phys. J. Plus, 135 (2020), 100. https://doi.org/10.1140/epjp/s13360-019-00076-1 doi: 10.1140/epjp/s13360-019-00076-1
    [19] N. Yang, J. Liang, C. Wu, Z. Guo, Dynamics and implementation of FPGA for memristor-coupled fractional-order Hopfield neural networks, Int. J. Bifurcat. Chaos, 34 (2024), 2450106. https://doi.org/10.1142/S0218127424501062 doi: 10.1142/S0218127424501062
    [20] H. Wang, Y. Yu, G. Wen, Stability analysis of fractional-order Hopfield neural networks with time delays, Neural Networks, 55 (2014), 98–109. https://doi.org/10.1016/j.neunet.2014.03.012 doi: 10.1016/j.neunet.2014.03.012
    [21] S. Zhang, Y. Yu, Q. Wang, Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions, Neurocomputing, 171 (2016), 1075–1084. https://doi.org/10.1016/j.neucom.2015.07.077 doi: 10.1016/j.neucom.2015.07.077
    [22] H. Wu, X. Zhang, S. Xue, L. Wang, Y. Wang, LMI conditions to global mittag-leffler stability of fractional-order neural networks with impulses, Neurocomputing, 193 (2016), 148–154. https://doi.org/10.1016/j.neucom.2016.02.002 doi: 10.1016/j.neucom.2016.02.002
    [23] L. Luo, L. Li, W. Huang, Asymptotic stability of fractional-order Hopfield neural networks with event-triggered delayed impulses and switching effects, Math. Comput. Simulat., 219 (2024), 491–504. https://doi.org/10.1016/j.matcom.2023.12.035 doi: 10.1016/j.matcom.2023.12.035
    [24] N. Huo, Y. Li, Pseudo almost periodic solution of fractional-order Clifford-valued high-order Hopfield neural networks, J. Appl. Anal. Comput., 14 (2024), 2488–2504. https://doi.org/10.11948/20220447 doi: 10.11948/20220447
    [25] C. Huang, X. Ding, Existence of traveling wave fronts for a diffusive Mackey-Glass model with two delays, Nonlinear Anal.-Real, 76 (2024), 104024. https://doi.org/10.1016/j.nonrwa.2023.104024 doi: 10.1016/j.nonrwa.2023.104024
    [26] C. Huang, X. Ding, Q. Wang, Positive periodic stability to a neutral Nicholson's blowflies model, Qual. Theor. Dyn. Syst., 24 (2025), 140. https://doi.org/10.1007/s12346-025-01295-x doi: 10.1007/s12346-025-01295-x
    [27] Y. Bai, Y. Li, Almost periodic positive solutions of two generalized Nicholson's blowflies equations with iterative term, Electron. Res. Arch., 32 (2024), 3230–3240. https://doi.org/10.3934/era.2024148 doi: 10.3934/era.2024148
    [28] X. Huang, Y. Li, Besicovitch almost periodic solutions for a stochastic generalized Mackey-Glass hematopoietic model, AIMS Math., 9 (2024), 26602–26630. https://doi.org/10.3934/math.20241294 doi: 10.3934/math.20241294
    [29] M. S. Ali, M. Hymavathi, B. Priya, S. A. Kauser, G. K. Thakur, Stability analysis of stochastic fractional-order competitive neural networks with leakage delay, AIMS Math., 6 (2021), 3205–3241. https://doi.org/10.3934/math.2021193 doi: 10.3934/math.2021193
    [30] S. Subramaniam, C. P. Lim, R. Rajan, P. Mani, Synchronization of fractional stochastic neural networks: An event triggered control approach, IEEE T. Syst. Man Cy.-S., 54 (2023), 1113–1123. https://doi.org/10.1109/TSMC.2023.3325732 doi: 10.1109/TSMC.2023.3325732
    [31] J. Ran, Y. Zhou, H. Pu, Global stability and synchronization of stochastic discrete-time variable-order fractional-order delayed quaternion-valued neural networks, Math. Comput. Simulat., 226 (2024), 413–437. https://doi.org/10.1016/j.matcom.2024.07.017 doi: 10.1016/j.matcom.2024.07.017
    [32] M. S. Ali, G. Narayanan, V. Shekher, H. Alsulami, T. Saeed, Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms, Appl. Math. Comput., 369 (2020), 124896. https://doi.org/10.1016/j.amc.2019.124896 doi: 10.1016/j.amc.2019.124896
    [33] D. Yang, Y. Yu, W. Hu, X. Yuan, G. Ren, Mean square asymptotic stability of discrete-time fractional order stochastic neural networks with multiple time-varying delays, Neural Process. Lett., 55 (2023), 9247–9268. https://doi.org/10.1007/s11063-023-11200-9 doi: 10.1007/s11063-023-11200-9
    [34] A. M. Fink, Almost periodic differential equations, Berlin: Springer, 1974. https://doi.org/10.1007/BFb0070324
    [35] Y. Li, X. Wang, Almost periodic solutions in distribution of Clifford-valued stochastic recurrent neural networks with time-varying delays, Chaos Soliton. Fract, 153 (2021), 111536. https://doi.org/10.1016/j.chaos.2021.111536 doi: 10.1016/j.chaos.2021.111536
    [36] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [37] M. P. Lazarevic, A. M. Spasic, Finite-time stability analysis of fractional-order time delay systems: Gronwall's approach, Math. Comput. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011
    [38] Q. Yang, C. Bai. D. Yang, Finite-time stability of nonlinear stochastic-Hilfer fractional systems with time delay, AIMS Math., 7 (2022), 18837–18852. https://doi.org/10.3934/math.20221037 doi: 10.3934/math.20221037
    [39] J. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal.-Real, 12 (2011), 262–272. https://doi.org/10.1016/j.nonrwa.2010.06.013 doi: 10.1016/j.nonrwa.2010.06.013
    [40] X. Shu, F. Xu, Y. J. Shi, $S$-asymptotically $\omega$-positive periodic solutions for a class of neutral fractional differential equations, Appl. Math. Comput., 270 (2015), 768–776. https://doi.org/10.1016/j.amc.2015.08.080 doi: 10.1016/j.amc.2015.08.080
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(446) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog