In this paper, the inverse problem of identifying the unknown source for the space-time fractional diffusion-wave equation is researched. This problem is ill-posed and needs the regularization approach to solve this inverse problem. The fractional Tikhonov regularization method and the quasi-inverse regularization method are used to obtain the fractional Tikhonov regularization solution and the quasi-inverse regularization solution, respectively. Under the a priori and the a posteriori regularization parameter selection rules, the error estimates of the regularization solutions and the exact solution are given. Finally, we provide several numerical examples to show the effectiveness of the approach.
Citation: Huimin Heng, Fan Yang, Xiaoxiao Li, Zhenji Tian. Two regularization methods for identifying the unknown source term of space-time fractional diffusion-wave equation[J]. AIMS Mathematics, 2025, 10(8): 18398-18430. doi: 10.3934/math.2025822
In this paper, the inverse problem of identifying the unknown source for the space-time fractional diffusion-wave equation is researched. This problem is ill-posed and needs the regularization approach to solve this inverse problem. The fractional Tikhonov regularization method and the quasi-inverse regularization method are used to obtain the fractional Tikhonov regularization solution and the quasi-inverse regularization solution, respectively. Under the a priori and the a posteriori regularization parameter selection rules, the error estimates of the regularization solutions and the exact solution are given. Finally, we provide several numerical examples to show the effectiveness of the approach.
| [1] |
S. Behera, J. S. P. Virdi, Analytical solutions fractional order partial differential equations arising in fluid dynamics, Appl. Math. J. Chinese Univ., 39 (2024), 458–468. https://doi.org/10.1007/s11766-024-4643-1 doi: 10.1007/s11766-024-4643-1
|
| [2] |
M. J. Mohammed, R. W. Ibrahim, M. Z. Ahmad, Periodicity computation of generalized mathematical biology problems involving delay differential equations, Saudi J. Biol. Sci., 24 (2017), 737–740. https://doi.org/10.1016/j.sjbs.2017.01.050 doi: 10.1016/j.sjbs.2017.01.050
|
| [3] |
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
|
| [4] |
A. Ben-Loghfyry, A. Charkaoui, Regularized Perona and Malik model involving Caputo time-fractional derivative with application to image denoising, Chaos Solitons Fract., 175 (2023), 113925. https://doi.org/10.1016/j.chaos.2023.113925 doi: 10.1016/j.chaos.2023.113925
|
| [5] |
A. Charkaoui, A. Ben-loghfyry, A novel multi-frame image super-resolution model based on regularized nonlinear diffusion with Caputo time fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 139 (2024), 108280. https://doi.org/10.1016/j.cnsns.2024.108280 doi: 10.1016/j.cnsns.2024.108280
|
| [6] |
A. Aribi, C. Farges, M. Aoun, P. Melchior, S. Najar, M. N. Abdelkrim, Fault detection based on fractional order models: application to diagnosis of thermal systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3679–3693. https://doi.org/10.1016/j.cnsns.2014.03.006 doi: 10.1016/j.cnsns.2014.03.006
|
| [7] |
V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
|
| [8] | R. M. A. Zahoor, I. M. Qureshi, A modified least mean square algorithm using fractional derivative and its application to system identification, Eur. J. Sci. Res., 35 (2009), 14–21. |
| [9] |
Y. J. Li, Y. J. Wang, W. H. Deng, Galerkin finite element approximations for stochastic space-time fractional wave equations, SIAM J. Numer. Anal., 55 (2017), 3173–3202. https://doi.org/10.1137/16M1096451 doi: 10.1137/16M1096451
|
| [10] |
X. J. Wang, S. Q. Gan, J. T. Tang, Higher order strong approximations of semilinear stochastic wave equation with additive space-time white noise, SIAM J. Sci. Comput., 36 (2014), A2611–A2632. https://doi.org/10.1137/130937524 doi: 10.1137/130937524
|
| [11] |
M. M. Meerschaert, R. L. Schilling, A. Sikorskii, Stochastic solutions for fractional wave equations, Nonlinear Dyn., 80 (2015), 1685–1695. https://doi.org/10.1007/s11071-014-1299-z doi: 10.1007/s11071-014-1299-z
|
| [12] |
L. Qiao, R. H. Li, F. Yang, X. X. Li, Simultaneous inversion of the source term and initial value of the multi-term time fractional slow diffusion equation, J. Appl. Anal. Comput., 15 (2025), 1903–1927. https://doi.org/10.11948/20240328 doi: 10.11948/20240328
|
| [13] |
J. G. Wang, T. Wei, Y. B. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Appl. Math. Model., 37 (2013), 8518–8532. https://doi.org/10.1016/j.apm.2013.03.071 doi: 10.1016/j.apm.2013.03.071
|
| [14] |
L. D. Long, B. P. Moghaddam, Y. Gurefe, Iterative weighted Tikhonov regularization technique for inverse problems in time-fractional diffusion-wave equations within cylindrical domains, Comput. Appl. Math., 44 (2025), 215. https://doi.org/10.1007/s40314-025-03176-0 doi: 10.1007/s40314-025-03176-0
|
| [15] |
F. Yang, Y. Cao, X. X. Li, Identifying source term and initial value simultaneously for the time-fractional diffusion equation with Caputo-like hyper-Bessel operator, Fract. Calc. Appl. Anal., 27 (2024), 2359–2396. https://doi.org/10.1007/s13540-024-00304-1 doi: 10.1007/s13540-024-00304-1
|
| [16] |
Y. Q. Liang, F. Yang, X. X. Li, A hybrid regularization method for identifying the source term and the initial value simultaneously for fractional pseudo-parabolic equation with involution, Numer. Algorithms, 99 (2025), 2063–2095. https://doi.org/10.1007/s11075-024-01944-3 doi: 10.1007/s11075-024-01944-3
|
| [17] |
L. L. Yan, F. Yang, X. X. Li, The fractional Tikhonov regularization method for simultaneous inversion of the source term and initial value in a space-fractional Allen-Cahn equation, J. Appl. Anal. Comput., 14 (2024), 2257–2282. https://doi.org/10.11948/20230364 doi: 10.11948/20230364
|
| [18] |
L. Qiao, F. Yang, X. X. Li, Simultaneous identification of the unknown source term and initial value for the time fractional diffusion equation with local and nonlocal operators, Chaos Solitons Fract., 189 (2024), 115601. https://doi.org/10.1016/j.chaos.2024.115601 doi: 10.1016/j.chaos.2024.115601
|
| [19] |
L. L. Yan, F. Yang, X. X. Li, Identifying the random source term and two initial value simultaneously for the stochastic time-fractional diffusion-wave equation, Commun. Nonlinear Sci. Numer. Simul., 152 (2026), 109135. https://doi.org/10.1016/j.cnsns.2025.109135 doi: 10.1016/j.cnsns.2025.109135
|
| [20] | W. Q. Hou, F. Yang, X. X. Li, Z. J. Tian, The modified Tikhonov regularization method for backward heat conduction problem with a complete parabolic equation in $\mathbb{R}^n$, Numer. Algorithms, 2025, 1–30. https://doi.org/10.1007/s11075-025-02164-z |
| [21] |
F. Yang, L. L. Yan, H. Liu, X. X. Li, Two regularization methods for identifying the unknown source of Sobolev equation with fractional Laplacian, J. Appl. Anal. Comput., 15 (2025), 198–225. https://doi.org/10.11948/20240065 doi: 10.11948/20240065
|
| [22] |
C. Y. Zhang, F. Yang, X. X. Li, Two regularization methods for identifying the spatial source term problem for a space-time fractional diffusion-wave equation, Mathematics, 12 (2024), 1–28. https://doi.org/10.3390/math12020231 doi: 10.3390/math12020231
|
| [23] |
F. Yang, Y. Zhang, X. X. Li, Landweber iterative method for an inverse source problem of time-space fractional diffusion-wave equation, Comput. Methods Appl. Math., 24 (2024), 265–278. https://doi.org/10.1515/cmam-2022-0240 doi: 10.1515/cmam-2022-0240
|
| [24] | Y. Q. Liang, F. Yang, X. X. Li, Two regularization methods for identifying the initial value of time-fractional telegraph equation, Comput. Methods Appl. Math., 2025. https://doi.org/10.1515/cmam-2024-0159 |
| [25] |
F. Yang, R. H. Li, Y. X. Gao, X. X. Li, Two regularization methods for identifying the source term of Caputo-Hadamard type time fractional diffusion-wave equation, J. Inverse Ill-Posed Probl., 33 (2025), 369–399. https://doi.org/10.1515/jiip-2024-0051 doi: 10.1515/jiip-2024-0051
|
| [26] |
C. Y. Zhang, F. Yang, X. X. Li, Identifying the source term and the initial value simultaneously for Caputo-Hadamard fractional diffusion equation on spherically symmetric domain, Comput. Appl. Math., 43 (2024), 161. https://doi.org/10.1007/s40314-024-02679-6 doi: 10.1007/s40314-024-02679-6
|
| [27] |
A. K. Louis, Medical imaging: state of the art and future development, Inverse Probl., 8 (1992), 709. https://doi.org/10.1088/0266-5611/8/5/003 doi: 10.1088/0266-5611/8/5/003
|
| [28] | G. T. Herman, Fundamentals of computerized tomography: image reconstruction from projections, London: Springer, 2009. https://doi.org/10.1007/978-1-84628-723-7 |
| [29] |
C. E. Creffield, E. G. Klepfish, E. R. Pike, S. Sarkar, Spectral weight function for the half-filled hubbard model: a singular value decomposition approach, Phys. Rev. Lett., 75 (1995), 517. https://doi.org/10.1103/PhysRevLett.75.517 doi: 10.1103/PhysRevLett.75.517
|
| [30] |
V. V. Uchaikin, V. A. Litvinov, Variational interpolation of functionals in transport theory inverse problems, Numer. Anal. Appl., 12 (2019), 297–310. https://doi.org/10.1134/S199542391903008X doi: 10.1134/S199542391903008X
|
| [31] |
C. Kravaris, J. H. Seinfeld, Identification of parameters in distributed parameter systems by regularization, SIAM J. Control Optim., 23 (1985), 217–241. https://doi.org/10.1137/0323017 doi: 10.1137/0323017
|
| [32] |
G. R. Richter, An inverse problem for the steady state diffusion equation, SIAM J. Appl. Math., 41 (1981), 210–221. https://doi.org/10.1137/0141016 doi: 10.1137/0141016
|
| [33] | A. A. Kilbas, H. M. Stivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
| [34] |
M. E. Hochstenbath, L. Reichel, Fractional Tikhonov regularization for linear discrete ill-posed problems, Bit Numer. Math., 51 (2011), 197–215. https://doi.org/10.1007/s10543-011-0313-9 doi: 10.1007/s10543-011-0313-9
|
| [35] | Z. Sun, The method of order reduction and its application to the numerical solutions of partial differential equations, Science Press, 2009. |
| [36] |
Z. J. Zhang, W. H. Deng, H. T. Fan, Finite difference schemes for the tempered fractional Laplacian, Numer. Math. Theor. Meth. Appl., 12 (2019), 492–516. https://doi.org/10.4208/nmtma.OA-2017-0141 doi: 10.4208/nmtma.OA-2017-0141
|