This paper explored the optimized Schwarz method (OSM) for solving contact conductance heat transfer problems, with a particular emphasis on the impact of thermal contact resistance (TCR) on the convergence behavior of the OSM algorithm when the standard Robin transmission condition is applied. The presence of TCR introduces a challenging optimization problem, which was rigorously addressed to determine the optimal Robin parameter and describe the corresponding convergence behavior. Our analysis yielded several novel findings. First, an increase in TCR results in faster convergence of the OSM algorithm. Second, mesh-independent convergence was achieved in an asymptotic sense, contrasting with the mesh-dependent convergence observed in the absence of TCR. Third, unlike the deceleration caused by strong heterogeneity in the TCR-free scenario, increased heterogeneity contrast accelerates convergence. Thermal conductivity also contributes to convergence enhancement in a manner analogous to the effect of heterogeneity. These theoretical results were validated through numerical experiments, demonstrating the significant influence of TCR on the performance of the OSM algorithm in contact conductance heat transfer problems.
Citation: Huan Zhang, YingXiang Xu. Robin-Schwarz algorithm for contact conductance heat transfer[J]. AIMS Mathematics, 2025, 10(8): 18381-18397. doi: 10.3934/math.2025821
This paper explored the optimized Schwarz method (OSM) for solving contact conductance heat transfer problems, with a particular emphasis on the impact of thermal contact resistance (TCR) on the convergence behavior of the OSM algorithm when the standard Robin transmission condition is applied. The presence of TCR introduces a challenging optimization problem, which was rigorously addressed to determine the optimal Robin parameter and describe the corresponding convergence behavior. Our analysis yielded several novel findings. First, an increase in TCR results in faster convergence of the OSM algorithm. Second, mesh-independent convergence was achieved in an asymptotic sense, contrasting with the mesh-dependent convergence observed in the absence of TCR. Third, unlike the deceleration caused by strong heterogeneity in the TCR-free scenario, increased heterogeneity contrast accelerates convergence. Thermal conductivity also contributes to convergence enhancement in a manner analogous to the effect of heterogeneity. These theoretical results were validated through numerical experiments, demonstrating the significant influence of TCR on the performance of the OSM algorithm in contact conductance heat transfer problems.
| [1] |
P. D. Mangalgiri, Composite materials for aerospace applications, Bull. Mater. Sci., 22 (1999), 657–664. https://doi.org/10.1007/BF02749982 doi: 10.1007/BF02749982
|
| [2] |
C. Zweben, Advances in composite materials for thermal management in electronic packaging, JOM, 50 (1998), 47–51. https://doi.org/10.1007/s11837-998-0128-6 doi: 10.1007/s11837-998-0128-6
|
| [3] |
J. I. Frankel, B. Vick, M. N. Özisik, General formulation and analysis of hyperbolic heat conduction in composite media, Int. J. Heat Mass Transfer, 30 (1987), 1293–1305. https://doi.org/10.1016/0017-9310(87)90162-1 doi: 10.1016/0017-9310(87)90162-1
|
| [4] |
P. L. Kapitza, Heat transfer and superfluidity of helium Ⅱ, Phys. Rev., 60 (1941), 354. https://doi.org/10.1103/PhysRev.60.354 doi: 10.1103/PhysRev.60.354
|
| [5] | O. M. Necati, Heat conduction, John Wiley & Sons, Inc, 1993. |
| [6] |
E. T. Swartz, R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys., 61 (1989), 605. https://doi.org/10.1103/RevModPhys.61.605 doi: 10.1103/RevModPhys.61.605
|
| [7] |
P. K. Jain, S. Singh, Rizwan-uddin, An exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates, Int. J. Heat Mass Transfer, 53 (2010), 2133–2142. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.035 doi: 10.1016/j.ijheatmasstransfer.2009.12.035
|
| [8] |
S. Singh, P. K. Jain, Rizwan-uddin, Finite integral transform method to solve asymmetric heat conduction in a multilayer annulus with time-dependent boundary conditions, Nucl. Eng. Des., 241 (2011), 144–154. https://doi.org/10.1016/j.nucengdes.2010.10.010 doi: 10.1016/j.nucengdes.2010.10.010
|
| [9] |
A. Amiri Delouei, M. Norouzi, Exact analytical solution for unsteady heat conduction in fiber-reinforced spherical composites under the general boundary conditions, J. Heat Transfer, 137 (2015), 101701. https://doi.org/10.1115/1.4030348 doi: 10.1115/1.4030348
|
| [10] |
Y. Gong, B. Li, Z. Li, Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions, SIAM J. Numer. Anal., 46 (2008), 472–495. https://doi.org/10.1137/060666482 doi: 10.1137/060666482
|
| [11] |
M. Oevermann, R. Klein, A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces, J. Comput. Phys., 219 (2006), 749–769. https://doi.org/10.1016/j.jcp.2006.04.010 doi: 10.1016/j.jcp.2006.04.010
|
| [12] |
R. Massjung, An unfitted discontinuous Galerkin method applied to elliptic interface problems, SIAM J. Numer. Anal., 50 (2012), 3134–3162. https://doi.org/10.1137/090763093 doi: 10.1137/090763093
|
| [13] |
H. Ji, F. Wang, J. Chen, Unfitted finite element methods for the heat conduction in composite media with contact resistance, Numer. Methods Partial Differ. Equ., 33 (2017), 354–380. https://doi.org/10.1002/num.22111 doi: 10.1002/num.22111
|
| [14] |
L. Wang, S. Hou, L. Shi, A weak formulation for solving the elliptic interface problems with imperfect contact, Adv. Appl. Math. Mech., 9 (2017), 1189–1205. https://doi.org/10.4208/aamm.2015.m1236 doi: 10.4208/aamm.2015.m1236
|
| [15] |
F. Cao, Z. Sheng, G. Yuan, Monotone finite volume schemes for diffusion equation with imperfect interface on distorted meshes, J. Sci. Comput., 76 (2018), 1055–1077. https://doi.org/10.1007/s10915-018-0651-8 doi: 10.1007/s10915-018-0651-8
|
| [16] | M. J. Gander, V. Martin, An introduction to heterogeneous domain decomposition methods for multi-physics problems, In: Domain decomposition methods in science and engineering XXVII, Lecture Notes in Computational Science and Engineering, Springer, 2022,215–222. https://doi.org/10.1007/978-3-031-50769-4_25 |
| [17] |
M. J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), 699–731. https://doi.org/10.1137/S0036142903425409 doi: 10.1137/S0036142903425409
|
| [18] | M. J. Gander, T. Vanzan, Heterogeneous optimized Schwarz methods for coupling Helmholtz and Laplace equations, In: Domain decomposition methods in science and engineering XXIV, Lecture Notes in Computational Science and Engineering, Springer, 2018,311–320. https://doi.org/10.1007/978-3-319-93873-8_29 |
| [19] | M. Discacciati, L. Gerardo-Giorda, Is minimising the convergence rate a good choice for efficient Optimized Schwarz preconditioning in heterogeneous coupling? The Stokes-Darcy case, In: Domain decomposition methods in science and engineering XXIV, Lecture Notes in Computational Science and Engineering, Springer, 2018,233–241. https://doi.org/10.1007/978-3-319-93873-8_21 |
| [20] |
M. J. Gander, T. Vanzan, Multilevel optimized Schwarz methods, SIAM J. Sci. Comput., 42 (2020), A3180–A3209. https://doi.org/10.1137/19M1259389 doi: 10.1137/19M1259389
|
| [21] |
Y. Liu, Y. Boubendir, X. He, Y. He, New optimized Robin–Robin domain decomposition methods using Krylov solvers for the Stokes–Darcy system, SIAM J. Sci. Comput., 44 (2022), B1068–B1095. https://doi.org/10.1137/21M1417223 doi: 10.1137/21M1417223
|
| [22] |
M. J. Gander, T. Vanzan, Heterogeneous optimized Schwarz methods for second order elliptic PDEs, SIAM J. Sci. Comput., 41 (2019), A2329–A2354. https://doi.org/10.1137/18M122114X doi: 10.1137/18M122114X
|
| [23] |
M. J. Gander, O. Dubois, Optimized Schwarz methods for a diffusion problem with discontinuous coefficient, Numer. Algor., 69 (2015), 109–144. https://doi.org/10.1007/s11075-014-9884-2 doi: 10.1007/s11075-014-9884-2
|
| [24] | H. Zhang, H. Zhang, Y. Wang, Y. Xu, Heterogeneous optimized Schwarz methods for heat conduction in composites with thermal contact resistance, submitted for publication. |
| [25] | W. A. Strauss, Partial differential equations: an introduction, 2 Eds., John Wiley & Sons, 2007. |
