This study investigates the problem of robust stability in a class of switched interconnected systems that involve unstable modes, time-varying and continuously distributed state delays, as well as uncertainties in switching signal and system parameters. Switching uncertainties lead to fluctuations in both the prescribed switching instants and the nominal switching sequence, which significantly affect system stability. To address these challenges, two novel concepts are introduced: the composite switching signal and the generalized nominal switching signal. Additionally, a new index, referred to as the generalized mode-changing rate, is proposed. By utilizing these concepts and the new index, the average dwell time approach and the vector Lyapunov function method are integrated to derive sufficient conditions for ensuring the robust exponential stability of the system. Finally, a numerical example is provided to illustrate the effectiveness and applicability of the proposed theory.
Citation: Huanbin Xue, Xiaopeng Yang. Robust stability of switched interconnected systems with multiple time delays and switching uncertainties[J]. AIMS Mathematics, 2025, 10(8): 18356-18380. doi: 10.3934/math.2025820
This study investigates the problem of robust stability in a class of switched interconnected systems that involve unstable modes, time-varying and continuously distributed state delays, as well as uncertainties in switching signal and system parameters. Switching uncertainties lead to fluctuations in both the prescribed switching instants and the nominal switching sequence, which significantly affect system stability. To address these challenges, two novel concepts are introduced: the composite switching signal and the generalized nominal switching signal. Additionally, a new index, referred to as the generalized mode-changing rate, is proposed. By utilizing these concepts and the new index, the average dwell time approach and the vector Lyapunov function method are integrated to derive sufficient conditions for ensuring the robust exponential stability of the system. Finally, a numerical example is provided to illustrate the effectiveness and applicability of the proposed theory.
| [1] |
D. Liberzon, A. S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst. Mag., 19 (1999), 59–70. https://doi.org/10.1109/37.793443 doi: 10.1109/37.793443
|
| [2] |
H. Xue, J. Zhang, Robust exponential stability of interconnected switched systems with mixed delays and impulsive effect, Nonlinear Dynam., 97 (2019), 679–696. https://doi.org/10.1007/s11071-019-05006-5 doi: 10.1007/s11071-019-05006-5
|
| [3] |
J. Daafouz, P. Riedinger, C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Trans. Autom. Control, 47 (2002), 1883–1887. https://doi.org/10.1109/TAC.2002.804474 doi: 10.1109/TAC.2002.804474
|
| [4] |
A. V. Il'in, Yu. M. Mosolova, V. V. Fomichev, A. S. Fursov, On the problem of switched system stabilization, Moscow Univ. Comput. Math. Cybern., 48 (2024), 303–316. https://doi.org/10.3103/S0278641924700201 doi: 10.3103/S0278641924700201
|
| [5] |
G. Zhai, B. Hu, K. Yasuda, A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, Int. J. Syst. Sci., 32 (2001), 1055–1061. https://doi.org/10.1080/00207720116692 doi: 10.1080/00207720116692
|
| [6] |
H. Yang, B. Jiang, V. Cocquempot, A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes, Nonlinear Anal. Hybrid Syst., 13 (2014), 45–60. https://doi.org/10.1016/j.nahs.2013.12.005 doi: 10.1016/j.nahs.2013.12.005
|
| [7] |
H. Yang, V. Cocquempot, B. Jiang, On stabilization of switched nonlinear systems with unstable modes, Syst. Control Lett., 58 (2009), 703–708. https://doi.org/10.1016/j.sysconle.2009.06.007 doi: 10.1016/j.sysconle.2009.06.007
|
| [8] |
M. Zhang, L. Gao, Input-to-state stability for impulsive switched nonlinear systems with unstable subsystems, T. I. Meas. Control, 40 (2018), 2167–2177. https://doi.org/10.1177/0142331217699057 doi: 10.1177/0142331217699057
|
| [9] |
J. Xing, B. Wu, Y. E. Wang, L. Liu, Exponential stability and non-weighted $L_2$-gain analysis for switched neutral systems with unstable subsystems, Int. J. Syst. Sci., 56 (2025), 673–689. https://doi.org/10.1080/00207721.2024.2409847 doi: 10.1080/00207721.2024.2409847
|
| [10] |
H. Li, Z. Wei, Stability analysis of discrete-time switched systems with all unstable subsystems, Discrete Cont. Dyn.-A, 17 (2024), 2762–2777. https://doi.org/10.3934/dcdss.2024040 doi: 10.3934/dcdss.2024040
|
| [11] |
N. Zhang, Y. Sun, Stabilization of switched positive linear delay system with all subsystems unstable, Int. J. Robust Nonlin., 34 (2024), 2441–2456. https://doi.org/10.1002/rnc.7091 doi: 10.1002/rnc.7091
|
| [12] |
L. X. Zhang, H. J. Gao, Asynchronously switched control of switched linear systems with average dwell time, Automatica, 46 (2010), 953–958. https://doi.org/10.1016/j.automatica.2010.02.021 doi: 10.1016/j.automatica.2010.02.021
|
| [13] |
G. Zong, R. Wang, W. X. Zheng, L. Hou, Finite-time stabilization for a class of switched time-delay systems under asynchronous switching, Appl. Math. Comput., 219 (2013), 5757–5771. https://doi.org/10.1016/j.amc.2012.11.078 doi: 10.1016/j.amc.2012.11.078
|
| [14] |
X. Wu, Y. Tang, J. Cao, W. Zhang, Distributed consensus of stochastic delayed multi-agent systems under asynchronous switching, IEEE T. Cybernetics, 46 (2015), 1817–1827. https://doi.org/10.1109/TCYB.2015.2453346 doi: 10.1109/TCYB.2015.2453346
|
| [15] |
L. Liu, F. Deng, Stability and stabilization of nonlinear stochastic systems with synchronous and asynchronous switching parameters to the states, IEEE T. Cybernetics, 53 (2022), 4894–4907. https://doi.org/10.1109/TCYB.2022.3151976 doi: 10.1109/TCYB.2022.3151976
|
| [16] |
S. Zhang, A. B. Nie, Exponential stability of fractional-order uncertain systems with asynchronous switching and impulses, Int. J. Robust Nonlin., 34 (2024), 7285–7313. https://doi.org/10.1002/rnc.7345 doi: 10.1002/rnc.7345
|
| [17] | L. Hetel, J. Daafouz, C. Iung, Stability analysis for discrete time switched systems with temporary uncertain switching signal, In: Proceedings of 46th IEEE Conf. Decision Control, New Orleans, LA, USA, 2007, 5623–5628. https://doi.org/10.1109/CDC.2007.4434794 |
| [18] |
Z. G. Li, Y. C. Soh, C. Y. Wen, Robust stability of quasi-periodic hybrid dynamic uncertain systems, IEEE T. Automat. Contr., 46 (2001), 107–111. https://doi.org/10.1109/9.898700 doi: 10.1109/9.898700
|
| [19] |
L. Zhang, E. Boukas, Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45 (2009), 463–468. https://doi.org/10.1016/j.automatica.2008.08.010 doi: 10.1016/j.automatica.2008.08.010
|
| [20] |
H. Wei, Q. Li, S. Zhu, D. Fan, Y. Zheng, Event-triggered resilient asynchronous estimation of stochastic Markovian jumping CVNs with missing measurements: A co-design control strategy, Inform. Sciences, 712 (2025), 122167. https://doi.org/10.1016/j.ins.2025.122167 doi: 10.1016/j.ins.2025.122167
|
| [21] |
Q. Li, H. Wei, D. Hua, J. Wang, J. Yang, Stabilization of semi-Markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Processing Letters, 56 (2024), 111. https://doi.org/10.1007/s11063-024-11585-1 doi: 10.1007/s11063-024-11585-1
|
| [22] |
H. Yang, B. Jiang, G. Tao, D. Zhou, Robust stability of switched nonlinear systems with switching uncertainties, IEEE Trans. Autom. Control, 61 (2016), 2531–2537. https://doi.org/10.1109/TAC.2015.2495619 doi: 10.1109/TAC.2015.2495619
|
| [23] |
Z. Sun, Robust switching of discrete-time switched linear systems, Automatica, 48 (2012), 239–242. https://doi.org/10.1016/j.automatica.2011.10.004 doi: 10.1016/j.automatica.2011.10.004
|
| [24] |
M. S. Mahmoud, F. M. AL-Sunni, Interconnected continuous-time switched systems: Robust stability and stabilization, Nonlinear Anal. Hybri., 4 (2010), 531–542. https://doi.org/10.1016/j.nahs.2010.01.001 doi: 10.1016/j.nahs.2010.01.001
|
| [25] |
L. Long, Multiple Lyapunov functions-based small-gain theorems for switched interconnected nonlinear systems, IEEE Trans. Autom. Control, 62 (2017), 3943–3958. https://doi.org/10.1109/TAC.2017.2648740 doi: 10.1109/TAC.2017.2648740
|
| [26] |
Y. Hou, Y. J. Liu, S. Tong, Decentralized event-triggered fault-tolerant control for switched interconnected nonlinear systems with input saturation and time-varying full-state constraints, IEEE Trans. Fuzzy Syst., 32 (2024), 3850–3860. https://doi.org/10.1109/TFUZZ.2024.3392632 doi: 10.1109/TFUZZ.2024.3392632
|
| [27] |
G. Gurrala, I. Sen, Power system stabilizers design for interconnected power systems, IEEE Trans. Power Syst., 25 (2010), 1042–1051. https://doi.org/10.1109/TPWRS.2009.2036778 doi: 10.1109/TPWRS.2009.2036778
|
| [28] |
Y. W. Zhao, H. Y. Zhang, Z. Y. Chen, H. Q. Wang, X. D. Zhao, Adaptive neural decentralised control for switched interconnected nonlinear systems with backlash-like hysteresis and output constraints, Int. J. Syst. Sci., 53 (2022), 1545–1561. https://doi.org/10.1080/00207721.2021.2017063 doi: 10.1080/00207721.2021.2017063
|
| [29] |
D. Zhai, X. Liu, Y. J. Liu, Adaptive decentralized controller design for a class of switched interconnected nonlinear systems, IEEE Trans. Cybern., 50 (2020), 1644–1654. https://doi.org/10.1109/TCYB.2018.2878578 doi: 10.1109/TCYB.2018.2878578
|
| [30] |
J. Zhang, S. Li, C. K. Ahn, Z. R. Xiang, Adaptive fuzzy decentralized dynamic surface control for switched large-scale nonlinear systems with full-state constraints, IEEE Trans. Cybern., 52 (2022), 10761–10772. https://doi.org/10.1109/TCYB.2021.3069461 doi: 10.1109/TCYB.2021.3069461
|
| [31] |
Y. Chen, Fuzzy interactions compensation in adaptive control of switched interconnected systems, IEEE Trans. Autom. Sci. Eng., 21 (2024), 48–55. https://doi.org/10.1109/TASE.2022.3205902 doi: 10.1109/TASE.2022.3205902
|
| [32] |
Y. Song, Y. Liu, W. Zhao, Approximately bi-similar symbolic model for discrete-time interconnected switched system, IEEE/CAA J. Autom. Sinica, 11 (2024), 2185–2187. https://doi.org/10.1109/JAS.2023.123927 doi: 10.1109/JAS.2023.123927
|
| [33] | U. T. Jőnsson, C. Y. Kao, H. Fujioka, Low dimensional stability criteria for large-scale interconnected systems, In: Proceedings of the 9th European Control Conference, Kos, Greece, 2007, 2741–2747. https://doi.org/10.23919/ECC.2007.7068616 |
| [34] |
M. S. Andersen, S. K. Pakazad, A. Hansson, A. Rantzer, Robust stability analysis of sparsely interconnected uncertain systems, IEEE Trans. Autom. Control, 59 (2014), 2151–2156. https://doi.org/10.1109/TAC.2014.2305934 doi: 10.1109/TAC.2014.2305934
|
| [35] |
N. T. Thanh, V. N. Phat, Decentralized stability for switched nonlinear large-scale systems with interval time-varying delays in interconnections, Nonlinear Anal. Hybrid Syst., 11 (2014), 22–36. https://doi.org/10.1016/j.nahs.2013.04.002 doi: 10.1016/j.nahs.2013.04.002
|
| [36] |
H. Ren, G. Zong, L. Hou, Y. Yi, Finite-time control of interconnected impulsive switched systems with time-varying delay, Appl. Math. Comput., 276 (2016), 143–157. https://doi.org/10.1016/j.amc.2015.12.012 doi: 10.1016/j.amc.2015.12.012
|
| [37] |
I. Malloci, Z. Lin, G. Yan, Stability of interconnected impulsive switched systems subject to state dimension variation, Nonlinear Anal. Hybrid Syst., 6 (2012), 960–971. https://doi.org/10.1016/j.nahs.2012.07.001 doi: 10.1016/j.nahs.2012.07.001
|
| [38] |
G. Yang, D. Liberzon, A Lyapunov-based small-gain theorem for interconnected switched systems, Syst. Control Lett., 78 (2015), 47–54. https://doi.org/10.1016/j.sysconle.2015.02.001 doi: 10.1016/j.sysconle.2015.02.001
|
| [39] |
J. Cao, D. Huang, Y. Qu, Global robust stability of delayed recurrent neural networks, Chaos Solitons Fractals, 23 (2005), 221–229. https://doi.org/10.1016/j.chaos.2004.04.002 doi: 10.1016/j.chaos.2004.04.002
|
| [40] |
T. Ensari, S. Arik, New results for robust stability of dynamical neural networks with discrete time delays, Expert Syst. Appl., 37 (2010), 5925–5930. https://doi.org/10.1016/j.eswa.2010.02.013 doi: 10.1016/j.eswa.2010.02.013
|
| [41] |
O. Faydasicok, S. Arik, A new upper bound for the norm of interval matrices with application to robust stability analysis of delayed neural networks, Neural Netw., 44 (2013), 64–71. https://doi.org/10.1016/j.neunet.2013.03.014 doi: 10.1016/j.neunet.2013.03.014
|
| [42] | D. D. Siljak, Large Scale Dynamic Systems: Stability and Structure, North Holland, Amsterdam, The Netherlands, 1978. |
| [43] |
X. Li, J. Cao, M. Perc, Switching laws design for stability of finite and infinite delayed switched systems with stable and unstable modes, IEEE Access, 6 (2018), 6677–6691. https://doi.org/10.1109/ACCESS.2017.2789165 doi: 10.1109/ACCESS.2017.2789165
|
| [44] |
Y. E. Wang, H. R. Karimi, D. Wu, Conditions for the stability of switched systems containing unstable subsystems, IEEE Trans. Circuits Syst. II: Express Briefs, 66 (2019), 617–621. https://doi.org/10.1109/TCSII.2018.2852766 doi: 10.1109/TCSII.2018.2852766
|
| [45] |
H. Xue, J. Zhang, H. Wang, B. Jiang, Robust stability of switched interconnected systems with time-varying delays, J. Comput. Nonlinear Dyn., 13 (2018), 021004. https://doi.org/10.1115/1.4038203 doi: 10.1115/1.4038203
|
| [46] |
J. Qi, C. Li, T. Huang, W. Zhang, Exponential stability of switched time-varying delayed neural networks with all modes being unstable, Neural Process. Lett., 43 (2016), 553–565. https://doi.org/10.1007/s11063-015-9428-3 doi: 10.1007/s11063-015-9428-3
|