We investigate Riemann solitons within spacetimes characterized by pure radiation metrics that are conformally related to a vacuum spacetime. Additionally, it is shown that the Riemann solitons on spacetimes with pure radiation metrics are gradient Riemann solitons with a certain potential function. Moreover, we classify the potential vector fields of Riemann solitons as Ricci collineation, Killing, and Ricci bi-conformal.
Citation: Rawan Bossly, Shahroud Azami, Dhriti Sundar Patra, Abdul Haseeb. Riemann solitons on spacetimes with pure radiation metrics[J]. AIMS Mathematics, 2025, 10(8): 18094-18107. doi: 10.3934/math.2025806
We investigate Riemann solitons within spacetimes characterized by pure radiation metrics that are conformally related to a vacuum spacetime. Additionally, it is shown that the Riemann solitons on spacetimes with pure radiation metrics are gradient Riemann solitons with a certain potential function. Moreover, we classify the potential vector fields of Riemann solitons as Ricci collineation, Killing, and Ricci bi-conformal.
| [1] |
N. Van den Bergh, Irrotational and conformally Ricci-flat perfect fluids, Gen. Relat. Gravit., 18 (1986), 649–668. https://doi.org/10.1007/BF00769933 doi: 10.1007/BF00769933
|
| [2] |
P. Wils, Homogeneous and conformally Ricci flat pure radiation fields, Class. Quantum Grav., 6 (1989), 1243–1251. https://doi.org/10.1088/0264-9381/6/9/009 doi: 10.1088/0264-9381/6/9/009
|
| [3] |
W. Kundt, Exact solutions of the field equations: Twist-free pure radiation fields, Proc. R. Soc. Lond. A, 270 (1962), 328–334. https://doi.org/10.1098/rspa.1962.0224 doi: 10.1098/rspa.1962.0224
|
| [4] |
G. Ludwig, S. B. Edgar, Conformally Ricci flat pure radiation metrics, Class. Quantum Grav., 14 (1997), 3453–3473. https://doi.org/10.1088/0264-9381/14/12/026 doi: 10.1088/0264-9381/14/12/026
|
| [5] |
A. A. Shaikh, H. Kundu, M. Ali, Z. Ahsan, Curvature properties of a special type of pure radiation metrics, J. Geom. Phys., 136 (2019), 195–206. https://doi.org/10.1016/j.geomphys.2018.11.002 doi: 10.1016/j.geomphys.2018.11.002
|
| [6] | C. Gu, Soliton theory and its applications, Springer Science and Business Media, 2013. |
| [7] |
N. J. Zabusky, M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240–243. https://doi.org/10.1103/PhysRevLett.15.240 doi: 10.1103/PhysRevLett.15.240
|
| [8] |
R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–261. https://doi.org/10.1090/conm/071/954419 doi: 10.1090/conm/071/954419
|
| [9] |
M. Headrick, T. Wiseman, Ricci flow and black holes, Class. Quantum. Grav., 23 (2006), 6683–6707. https://doi.org/10.1088/0264-9381/23/23/006 doi: 10.1088/0264-9381/23/23/006
|
| [10] |
M. Brozes-Vázquez, G. Calvaruso, E. García-Rio, S. Gavino-Fernándz, Three-dimensional Lorentzian homogeneous Ricci solitons, Isr. J. Math., 188 (2012), 385–403. https://doi.org/10.1007/s11856-011-0124-3 doi: 10.1007/s11856-011-0124-3
|
| [11] |
M. M. Akbar, E. Woolgar, Ricci solitons and Einstein-scalar field theory, Class. Quantum Grav., 26 (2009), 055015. https://doi.org/10.1088/0264-9381/26/5/055015 doi: 10.1088/0264-9381/26/5/055015
|
| [12] |
A. L. Kholodenko, Towards physically motivated proofs of the Poincaré and geometrization conjectures, J. Geom. Phys., 58 (2008), 259–290. https://doi.org/10.1016/j.geomphys.2007.11.003 doi: 10.1016/j.geomphys.2007.11.003
|
| [13] |
M. Brozos-Vazquez, E. Garcia-Rio, S. Gavino-Fernandez, Locally conformally flat Lorentzian gradient Ricci solitons, J. Geom. Anal., 23 (2013), 1196–1212. https://doi.org/10.1007/s12220-011-9283-z doi: 10.1007/s12220-011-9283-z
|
| [14] |
S. Azami, M. Jafari, N. Jamal, A. Haseeb, Hyperbolic Ricci solitons on perfect fluid spacetimes, AIMS Mathematics, 9 (2024), 18929–18943. https://doi.org/10.3934/math.2024921 doi: 10.3934/math.2024921
|
| [15] | C. Udrişte, Riemann flow and Riemann wave, Ann. Univ. Vest Timisoara. Ser. Mat. Inf., 48 (2010), 256–274. |
| [16] | C. Udrişte, Riemann flow and Riemann wave via bialternate product Riemannian metric, 2011, arXiv: 1112.4279. https://doi.org/10.48550/arXiv.1112.4279 |
| [17] | I. E. Hiricǎ, C. Udrişte, Ricci and Riemann solitons, Balkan J. Geom. Appl., 21 (2016), 35–44. |
| [18] |
G. G. Biswas, X. Chen, C. De Uday, Riemann solitons on almost co-Kahler manifolds, Filomat, 36 (2022), 1403–1413. https://doi.org/10.2298/FIL2204403B doi: 10.2298/FIL2204403B
|
| [19] | M. N. Devaraja, H. A. Kumara, V. Venkatesha, Riemannian soliton within the framework of contact geometry, Quaestiones Math., 44 (2021), 637–651. |
| [20] |
V. Venkatesha, H. A. Kumara, M. N. Devaraja, Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds, Int. Geom. Methods Mod. Phys., 17 (2020), 2050105. https://doi.org/10.1142/S0219887820501054 doi: 10.1142/S0219887820501054
|
| [21] |
K. De, U. C. De, Riemann solitons on para-Sasakian geometry, Carpathian Math. Publ., 14 (2022), 395–405. https://doi.org/10.15330/cmp.14.2.395-405 doi: 10.15330/cmp.14.2.395-405
|
| [22] |
S. Azami, R. Bossly, A. Haseeb, Riemann solitons on Egorov and Cahen-Wallach symmetric spaces, AIMS Mathematics, 10 (2025), 1882–1899. https://doi.org/10.3934/math.2025087 doi: 10.3934/math.2025087
|
| [23] |
S. Azami, M. Jafari, Riemann solitons on perfect fluid spacetimes in $f(r, T)$-gravity, Rend. Circ. Mat. Palermo, II. Ser 74 (2025), 2. https://doi.org/10.1007/s12215-024-01116-1 doi: 10.1007/s12215-024-01116-1
|
| [24] |
S. Azami, M. Jafari, Riemann solitons on relativistic space-times, Gravit. Cosmol., 30 (2024), 306–311. https://doi.org/10.1134/S020228932470021X doi: 10.1134/S020228932470021X
|
| [25] |
A. M. Blaga, Remarks on almost Riemann solitons with gradient or torse-forming vector field, Bull. Malays. Math. Sci. Soc., 44 (2021), 3215–3227. https://doi.org/10.1007/s40840-021-01108-9 doi: 10.1007/s40840-021-01108-9
|
| [26] |
W. Batat, N. Sidhoumi, A Ricci soliton characterization of pure radiation metrics conformal to a vacuum space-time, Gravit. Cosmol., 28 (2022), 108–114. https://doi.org/10.1134/S0202289322020037 doi: 10.1134/S0202289322020037
|
| [27] | K. Yano, The theory of Lie derivatives and its applications, Dover publications, 2020. |
| [28] |
U. C. De, A. Sardar, A. Sarkar, Some conformal vector fields and conformal Ricci solitons on $N(k)$-contact metric manifolds, AUT J. Math. Comput, 2 (2021), 61–71. https://doi.org/10.22060/ajmc.2021.19220.1043 doi: 10.22060/ajmc.2021.19220.1043
|
| [29] |
S. Azami, U. C. De, Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups, Hacet. J. Math. Stat., 53 (2024), 1118–1129. https://doi.org/10.15672/hujms.1294973 doi: 10.15672/hujms.1294973
|
| [30] | S. Azami, G. Fasihi-Ramandi, Ricci bi-conformal vector fields on Siklos spacetimes, Math. Interdisciplinary Res., 9 (2024), 45–76. |
| [31] |
S. Azami, M. Jafari, Ricci bi-conformal vector fields on homogeneous Gödel-type spacetimes, J. Nonlinear Math. Phys., 30 (2023), 1700–1718. https://doi.org/10.1007/s44198-023-00151-3 doi: 10.1007/s44198-023-00151-3
|
| [32] |
M. Sohrabpour, S. Azami, Ricci bi-conformal vector fields on Lorentzian Walker manifolds of low dimension, Lobachevskii J. Math., 44 (2023), 5437–5443. https://doi.org/10.1134/S1995080223120338 doi: 10.1134/S1995080223120338
|