This work presents an algorithm that applies the typical collocation method to solve the time-fractional Kuramoto–Sivashinsky equation (TFKSE). Our suggested new basis functions are the Fibonacci coefficient polynomials. We develop new theoretical results of these polynomials, such as their integer and fractional derivatives. The proposed approach efficiently estimates spatial and temporal derivatives using the operational matrices (OMs) of derivatives of the introduced polynomials. The approach converts the TFKSE controlled by their conditions into a non-linear system of equations that may be handled numerically. A thorough error and convergence analysis study for the proposed Fibonacci coefficient expansion is presented. Several illustrative numerical examples, including those with known exact solutions, are presented to confirm the efficiency and applicability of the suggested approach, even with fewer terms of basis functions. In addition, comparisons with some numerical methods are presented to verify our numerical approach's high accuracy.
Citation: Waleed Mohamed Abd-Elhameed, Ahmed H. Al-Mehmadi, Naher Mohammed A. Alsafri, Omar Mazen Alqubori, Mohamed Adel, Ahmed Gamal Atta. Spectral collocation approach for solving the time-fractional Kuramoto-Sivashinsky equation using the Fibonacci coefficient polynomials[J]. AIMS Mathematics, 2025, 10(8): 18070-18093. doi: 10.3934/math.2025805
This work presents an algorithm that applies the typical collocation method to solve the time-fractional Kuramoto–Sivashinsky equation (TFKSE). Our suggested new basis functions are the Fibonacci coefficient polynomials. We develop new theoretical results of these polynomials, such as their integer and fractional derivatives. The proposed approach efficiently estimates spatial and temporal derivatives using the operational matrices (OMs) of derivatives of the introduced polynomials. The approach converts the TFKSE controlled by their conditions into a non-linear system of equations that may be handled numerically. A thorough error and convergence analysis study for the proposed Fibonacci coefficient expansion is presented. Several illustrative numerical examples, including those with known exact solutions, are presented to confirm the efficiency and applicability of the suggested approach, even with fewer terms of basis functions. In addition, comparisons with some numerical methods are presented to verify our numerical approach's high accuracy.
| [1] | R. Magin, Fractional calculus in bioengineering, part 1, In: Critical Reviews in Biomedical Engineering, 32 (2004), 1–104. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 |
| [2] |
S. M. Sivalingam, P. Kumar, V. Govindaraj, A Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equations, Comput. Math. Appl., 164 (2024), 150–165. https://doi.org/10.1016/j.camwa.2024.04.005 doi: 10.1016/j.camwa.2024.04.005
|
| [3] |
F. Wang, Q. Fang, Y. Hu, Homotopy analysis transform method for solving systems of fractional-order partial differential equations, Fractal Fract., 9 (2025), 253. https://doi.org/10.3390/fractalfract9040253 doi: 10.3390/fractalfract9040253
|
| [4] |
M. Al-Mazmumy, M. A. Alyami, M. Alsulami, A. S. Alsulami, Efficient modified Adomian decomposition method for solving nonlinear fractional differential equations, Int. J. Anal. Appl., 22 (2024), 76. https://doi.org/10.28924/2291-8639-22-2024-76 doi: 10.28924/2291-8639-22-2024-76
|
| [5] |
M. Al-Mazmumy, M. A. Alyami, M. Alsulami, A. S. Alsulami, S. S. Redhwan, An Adomian decomposition method with some orthogonal polynomials to solve nonhomogeneous fractional differential equations (FDEs), AIMS Math., 9 (2024), 30548–30571. https://doi.org/10.3934/math.20241475 doi: 10.3934/math.20241475
|
| [6] |
P. K. Singh, S. S. Ray, A numerical approach based on Pell polynomial for solving stochastic fractional differential equations, Numer. Algorithms, 97 (2024), 1513–1534. https://doi.org/10.1007/s11075-024-01760-9 doi: 10.1007/s11075-024-01760-9
|
| [7] |
H. M. Ahmed, Enhanced shifted Jacobi operational matrices of integrals: spectral algorithm for solving some types of ordinary and fractional differential equations, Bound. Value Probl., 2024 (2024), 75. https://doi.org/10.1186/s13661-024-01880-0 doi: 10.1186/s13661-024-01880-0
|
| [8] |
H. M. Ahmed, R. M. Hafez, W. M. Abd-Elhameed, A computational strategy for nonlinear time-fractional generalized Kawahara equation using new eighth-kind Chebyshev operational matrices, Phys. Scripta, 99 (2024), 045250. https://doi.org/10.1088/1402-4896/ad3482 doi: 10.1088/1402-4896/ad3482
|
| [9] |
W. M. Abd-Elhameed, A. K. Al-Harbi, O. M. Alqubori, M. H. Alharbi, A. G. Atta, Collocation method for the time-fractional generalized Kawahara equation using a certain Lucas polynomial sequence, Axioms, 14 (2025), 114. https://doi.org/10.3390/axioms14020114 doi: 10.3390/axioms14020114
|
| [10] |
W. M. Abd-Elhameed, O. M. Alqubori, N. M. A. Alsafri, A. K. Amin, A. G. Atta, A matrix approach by convolved Fermat polynomials for solving the fractional Burgers' equation, Mathematics, 13 (2025), 1135. https://doi.org/10.3390/math13071135 doi: 10.3390/math13071135
|
| [11] |
S. Bu, Y. Jeon, Higher-order predictor-corrector methods with an enhanced predictor for fractional differential equations, Int. J. Comput. Math., 102 (2025), 1057–1080. https://doi.org/10.1080/00207160.2025.2472219 doi: 10.1080/00207160.2025.2472219
|
| [12] |
R. Pant, G. Arora, B. K. Singh, H. Emadifar, Numerical solution of two-dimensional fractional differential equations using Laplace transform with residual power series method, Nonlinear Eng., 13 (2024), 20220347. https://doi.org/10.1515/nleng-2022-0347 doi: 10.1515/nleng-2022-0347
|
| [13] |
X. Zhang, Y. Feng, Z. Luo, J. Liu, A spatial sixth-order numerical scheme for solving fractional partial differential equation, Appl. Math. Lett., 159 (2025), 109265. https://doi.org/10.1016/j.aml.2024.109265 doi: 10.1016/j.aml.2024.109265
|
| [14] |
S. M. Sivalingam, P. Kumar, V. Govindaraj, A neural networks-based numerical method for the generalized Caputo-type fractional differential equations, Math. Comput. Simul., 213 (2023), 302–323. https://doi.org/10.1016/j.matcom.2023.06.012 doi: 10.1016/j.matcom.2023.06.012
|
| [15] |
W. M. Abd-Elhameed, A. M. Al-Sady, O. M. Alqubori, A. G. Atta, Numerical treatment of the fractional Rayleigh-Stokes problem using some orthogonal combinations of Chebyshev polynomials, AIMS Math., 9 (2024), 25457–25481. https://doi.org/ 10.3934/math.20241243 doi: 10.3934/math.20241243
|
| [16] |
W. M. Abd-Elhameed, M. M. Alsuyuti, New spectral algorithm for fractional delay pantograph equation using certain orthogonal generalized Chebyshev polynomials, Commun. Nonlinear Sci. Numer. Simul., 141 (2025), 108479. https://doi.org/10.1016/j.cnsns.2024.108479 doi: 10.1016/j.cnsns.2024.108479
|
| [17] |
W. M. Abd-Elhameed, M. S. Al-Harbi, A. G. Atta, New convolved Fibonacci collocation procedure for the Fitzhugh–Nagumo non-linear equation, Nonlinear Eng., 13 (2024), 20220332. https://doi.org/10.1515/nleng-2022-0332 doi: 10.1515/nleng-2022-0332
|
| [18] |
M. H. Alharbi, A. F. Abu Sunayh, A. G. Atta, W. M. Abd-Elhameed, Novel approach by shifted Fibonacci polynomials for solving the fractional Burgers equation, Fractal Fract., 8 (2024), 427. https://doi.org/10.3390/fractalfract8070427 doi: 10.3390/fractalfract8070427
|
| [19] |
O. Postavaru, An efficient numerical method based on Fibonacci polynomials to solve fractional differential equations, Math. Comput. Simul., 212 (2023), 406–422. https://doi.org/10.1016/j.matcom.2023.04.028 doi: 10.1016/j.matcom.2023.04.028
|
| [20] |
S. Haq, I. Ali, Approximate solution of two-dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials, Eng. Comput., 38 (2022), 2059–2068. https://doi.org/10.1007/s00366-021-01327-5 doi: 10.1007/s00366-021-01327-5
|
| [21] |
Z. Avazzadeh, H. Hassani, M. J. Ebadi, A. B. Eshkaftaki, A new approach of generalized shifted Vieta-Fibonacci polynomials to solve nonlinear variable order time fractional Burgers-Huxley equations, Phys. Scr., 99 (2024), 125258. https://doi.org/10.1088/1402-4896/ad8fde doi: 10.1088/1402-4896/ad8fde
|
| [22] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods in fluid dynamics, Berlin: Springer-Verlag, 1988. |
| [23] |
R. M. Hafez, M. A. Zaky, M. A. Abdelkawy, Jacobi spectral Galerkin method for distributed-order fractional Rayleigh-Stokes problem for a generalized second grade fluid, Front. Phys., 7 (2020), 240. https://doi.org/10.3389/fphy.2019.00240 doi: 10.3389/fphy.2019.00240
|
| [24] |
R. M. Hafez, H. M. Ahmed, O. M. Alqubori, A. K. Amin, W. M. Abd-Elhameed, Efficient spectral Galerkin and collocation approaches using telephone polynomials for solving some models of differential equations with convergence analysis, Mathematics, 13 (2025), 918. https://doi.org/10.3390/math13060918 doi: 10.3390/math13060918
|
| [25] |
X. Zhang, J. Wang, Z. Wu, Z. Tang, X. Zeng. Spectral Galerkin methods for Riesz space-fractional convection–diffusion equations, Fractals Fract., 8 (2024), 431. https://doi.org/10.3390/fractalfract8070431 doi: 10.3390/fractalfract8070431
|
| [26] | Y. H. Youssri, M. A. Zaky, R. M. Hafez. Romanovski-Jacobi spectral schemes for high-order differential equations. Appl. Numer. Math., 198 (2024), 148–159. https://doi.org/10.1016/j.apnum.2023.12.015 |
| [27] |
M. Gamal, M. A. Zaky, M. El-Kady, M. Abdelhakem. Chebyshev polynomial derivative-based spectral tau approach for solving high-order differential equations, Comput. Appl. Math., 43 (2024), 412. https://doi.org/10.1007/s40314-024-02908-y doi: 10.1007/s40314-024-02908-y
|
| [28] | H. F. Ahmed, W. A. Hashem, A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions. Math. Comput. Simul., 214 (2023), 388–408. https://doi.org/10.1016/j.matcom.2023.07.023 |
| [29] |
W. M. Abd-Elhameed, O. M. Alqubori, A. G. Atta. A collocation procedure for treating the time-fractional Fitzhugh-Nagumo differential equation using shifted Lucas polynomials, Mathematics, 12 (2024), 3672. https://doi.org/10.3390/math12233672 doi: 10.3390/math12233672
|
| [30] |
R. M. Hafez, Y. H. Youssri, Legendre-collocation spectral solver for variable-order fractional functional differential equations, Comput. Methods Differ. Equ., 8 (2020), 99–110. https://doi.org/10.22034/cmde.2019.9465 doi: 10.22034/cmde.2019.9465
|
| [31] |
H. M. Ahmed, New generalized Jacobi Galerkin operational matrices of derivatives: an algorithm for solving multi-term variable-order time-fractional diffusion-wave equations, Fractal Fract., 8 (2024), 68. https://doi.org/10.3390/fractalfract8010068 doi: 10.3390/fractalfract8010068
|
| [32] |
S. Kumar, V. Gupta, D. Zeidan, An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations, Appl. Numer. Math., 204 (2024), 249–264. https://doi.org/10.1016/j.apnum.2024.06.014 doi: 10.1016/j.apnum.2024.06.014
|
| [33] |
N. A. Khan, M. Ali, A. Ara, M. I. Khan, S. Abdullaeva, M. Waqas, Optimizing pantograph fractional differential equations: A Haar wavelet operational matrix method, Partial Differ. Equ. Appl. Math., 11 (2024), 100774. https://doi.org/10.1016/j.padiff.2024.100774 doi: 10.1016/j.padiff.2024.100774
|
| [34] |
S. Poojitha, A. Awasthi, Operational matrix based numerical scheme for the solution of time fractional diffusion equations, Fractional Calculus Appl. Anal., 27 (2024), 877–895. https://doi.org/10.1007/s13540-024-00252-w doi: 10.1007/s13540-024-00252-w
|
| [35] |
S. M. Sivalingam, P. Kumar, V. Govindaraj, R. A. Qahiti, W. Hamali, Z. M. Mutum, An operational matrix approach with vieta-Fibonacci polynomial for solving generalized Caputo fractal-fractional differential equations, Ain Shams Eng. J., 15 (2024), 102678. https://doi.org/10.1016/j.asej.2024.102678 doi: 10.1016/j.asej.2024.102678
|
| [36] |
Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356–369. https://doi.org/10.1143/PTP.55.356 doi: 10.1143/PTP.55.356
|
| [37] | G. I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames, Annual Rev. Fluid Mech., 15 (1983), 179–199. https://doi.org/10.1146/annurev.fl.15.010183.001143 |
| [38] |
O. E. Hepson, Numerical simulations of Kuramoto–Sivashinsky equation in reaction–diffusion via Galerkin method, Math. Sci., 15 (2021), 199–206. https://doi.org/10.1007/s40096-021-00402-8 doi: 10.1007/s40096-021-00402-8
|
| [39] |
N. Kaur, V. Joshi, Kuramoto-Sivashinsky equation: Numerical solution using two quintic B-splines and differential quadrature method, Math. Comput. Simul., 220 (2024), 105–127. https://doi.org/10.1016/j.matcom.2023.12.036 doi: 10.1016/j.matcom.2023.12.036
|
| [40] |
M. Aychluh, M. Ayalew, The fractional power series method for solving the nonlinear Kuramoto-Sivashinsky equation, Int. J. Appl. Comput. Math., 11 (2025), 29. https://doi.org/10.1007/s40819-025-01850-9 doi: 10.1007/s40819-025-01850-9
|
| [41] |
A. Ayebire, S. Sahani, Priyanka, S. Arora, Numerical study of soliton behavior of generalised Kuramoto–Sivashinsky type equations with Hermite splines, AIMS Math., 10 (2025), 2098–2130. https://doi.org/10.3934/math.2025099 doi: 10.3934/math.2025099
|
| [42] |
A. Kumari, V. K. Kukreja, Study of 4th order Kuramoto-Sivashinsky equation by septic Hermite collocation method, Appl. Numer. Math., 188 (2023), 88–105. https://doi.org/10.1016/j.apnum.2023.03.001 doi: 10.1016/j.apnum.2023.03.001
|
| [43] |
R. K. Mohanty, D. Sharma, A new 2-level implicit high accuracy compact exponential approximation for the numerical solution of nonlinear fourth order Kuramoto-Sivashinsky and Fisher-Kolmogorov equations, J. Math. Chem., 62 (2024), 973–1011. https://doi.org/10.1007/s10910-024-01577-w doi: 10.1007/s10910-024-01577-w
|
| [44] |
P. Sawangtong, M. Taghipour, A. Najafi, Enhanced numerical solution for time fractional Kuramoto-Sivashinsky dynamics via shifted companion Morgan-Voyce polynomials, Comput. Appl. Math., 44 (2025), 214. https://doi.org/10.1007/s40314-025-03160-8 doi: 10.1007/s40314-025-03160-8
|
| [45] |
P. Veeresha, D. G. Prakasha, Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique, Int. J. Appl. Comput. Math., 7 (2021), 33. https://doi.org/10.1007/s40819-021-00956-0 doi: 10.1007/s40819-021-00956-0
|
| [46] |
J. Wang, X. Jiang, X. Yang, H. Zhang, A new robust compact difference scheme on graded meshes for the time-fractional nonlinear Kuramoto-Sivashinsky equation, Comput. Appl. Math., 43 (2024), 381. https://doi.org/10.1007/s40314-024-02883-4 doi: 10.1007/s40314-024-02883-4
|
| [47] |
A. Nazari-Golshan, Fractional generalized Kuramoto–Sivashinsky equation: Formulation and solution, Eur. Phys. J. Plus, 134 (2019), 565. https://doi.org/10.1140/epjp/i2019-12948-7 doi: 10.1140/epjp/i2019-12948-7
|
| [48] |
A. Kumar, Dynamic behaviour and semi-analytical solution of nonlinear fractional-order Kuramoto-Sivashinsky equation, Pramana, 98 (2024), 48. https://doi.org/10.1007/s12043-024-02728-z doi: 10.1007/s12043-024-02728-z
|
| [49] |
L. J. T. Doss, V. Sindhujarani, H1-Galerkin mixed finite element method using tensor product of cubic B-splines for two-dimensional Kuramoto-Sivashinsky equation, Comput. Math. Appl., 188 (2025), 19–39. https://doi.org/10.1016/j.camwa.2025.03.009 doi: 10.1016/j.camwa.2025.03.009
|
| [50] |
W. W. Mohammed, A. M. Albalahi, S. Albadrani, E. S. Aly, R. Sidaoui, A. E. Matouk, The analytical solutions of the stochastic fractional Kuramoto-Sivashinsky equation by using the Riccati equation method, Math. Probl. Eng., 2022 (2022), 5083784. https://doi.org/10.1155/2022/5083784 doi: 10.1155/2022/5083784
|
| [51] | D. Garth, D. Mills, P. Mitchell, Polynomials generated by the Fibonacci sequence, J. Integer Seq., 10 (2007), 3. |
| [52] |
R. Choudhary, S. Singh, P. Das, D. Kumar, A higher order stable numerical approximation for time-fractional non-linear Kuramoto–Sivashinsky equation based on quintic B-spline, Math. Meth. Appl. Sci., 47 (2024), 11953–11975. https://doi.org/10.1002/mma.9778 doi: 10.1002/mma.9778
|
| [53] | Y. Kuramoto, Chemical turbulence, Berlin: Springer, 1984. |