In this paper, we investigated the existence of solutions to the discrete boundary value problem involving the singular $ \phi $-Laplacian. First, we extended the domain of the singular operator to the entire real line, which leads to an auxiliary problem corresponding to the original one. Then, by using critical point theory combined with the strong maximum principle, we obtained a series of conditions for the existence of one positive solution or multiple positive solutions for the original problem. Finally, three numerical examples were provided to illustrate the effectiveness of our results.
Citation: Zhiqiang Huang, Zhan Zhou. Positive solutions to the discrete boundary value problem involving the singular $ \phi $-Laplacian[J]. AIMS Mathematics, 2025, 10(8): 17922-17939. doi: 10.3934/math.2025798
In this paper, we investigated the existence of solutions to the discrete boundary value problem involving the singular $ \phi $-Laplacian. First, we extended the domain of the singular operator to the entire real line, which leads to an auxiliary problem corresponding to the original one. Then, by using critical point theory combined with the strong maximum principle, we obtained a series of conditions for the existence of one positive solution or multiple positive solutions for the original problem. Finally, three numerical examples were provided to illustrate the effectiveness of our results.
| [1] |
B. Zheng, H. L. Zhou, J. S. Yu, Periodic dynamics of a single-species population model based on the discrete Beverton-Holt equation, Discrete Con. Dyn.-A, 45 (2025), 2126–2144. https://doi.org/10.3934/dcds.2024159 doi: 10.3934/dcds.2024159
|
| [2] |
B. Zheng, H. C. Yang, S. Elaydi, J. S. Yu, wStri spread dynamics in Nilaparvata lugens via discrete mathematical models, J. Math. Biol., 90 (2025), 1–26. https://doi.org/10.1007/s00285-025-02198-w doi: 10.1007/s00285-025-02198-w
|
| [3] |
D. Y. Kong, J. S. Yu, B. Zheng, Comparative studies of Wolbachia spread dynamics in mosquito populations via discrete models, J. Differ. Equations, 440 (2025), 113450. https://doi.org/10.1016/j.jde.2025.113450 doi: 10.1016/j.jde.2025.113450
|
| [4] |
M. Hamada, T. E. Azab, H. E. Metwally, Bifurcation analysis of a two-dimensional discrete-time predator-prey model, Math. Method. Appl. Sci., 46 (2023), 4815–4833. https://doi.org/10.1002/mma.8807 doi: 10.1002/mma.8807
|
| [5] |
I. Elbaz, H. E. Metwally, M. Sohaly, Dynamics of delayed Nicholson's blowflies models, J. Biol. Syst., 30 (2022), 741–759. https://doi.org/10.1142/S0218339022500279 doi: 10.1142/S0218339022500279
|
| [6] |
Y. Zhao, Q. X. Zhu, Stabilization of stochastic highly nonlinear delay systems with neutral term, IEEE T. Automat. Contr., 68 (2022), 2544–2551. https://doi.org/10.1109/TAC.2022.3186827 doi: 10.1109/TAC.2022.3186827
|
| [7] |
W. Zhang, J. Zhang, Planar Hénon-type equation with Trudinger-Moser critical growth, Discrete Cont.. Dyn.-A, 45 (2025), 4529–4553. https://doi.org/10.3934/dcds.2025066 doi: 10.3934/dcds.2025066
|
| [8] | Q. Q. Li, V. D. Rădulescu, J. Zhang, W. Zhang, Concentration of normalized solutions for non-autonomous fractional Schrödinger equations, Z. Angew. Math. Phys., 76 (2025), 132. |
| [9] |
L. M. Guo, W. H. Wang, C. Li, J. B. Zhao, D. D. Min, Existence results for a class of nonlinear singular $p$-Laplacian Hadamard fractional differential equations, Electron. Res. Arch., 32 (2024), 928–944. https://doi.org/10.3934/era.2024045 doi: 10.3934/era.2024045
|
| [10] |
A. Mohamed, J. J. Wang, C. H. Gao, X. B. Yao, Existence of positive solution for second-order singular semipositone difference equation with nonlinear boundary conditions, Mediterr. J. Math., 19 (2022), 276. https://doi.org/10.1007/s00009-022-02200-5 doi: 10.1007/s00009-022-02200-5
|
| [11] |
Y. T. Yang, F. W. Meng, Eigenvalue problem for finite difference equations with $\phi$-Laplacian, J. Appl. Math. Comput., 40 (2012), 319–340. https://doi.org/10.1007/s12190-012-0559-7 doi: 10.1007/s12190-012-0559-7
|
| [12] |
D. Y. Bai, X. L. Xu, Existence and multiplicity of difference $\phi$-Laplacian boundary value problems, Adv. Differ. Equ., 2013 (2013), 1–13. https://doi.org/10.1186/1687-1847-2013-267 doi: 10.1186/1687-1847-2013-267
|
| [13] |
D. Y. Bai, Y. M. Chen, Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems, Appl. Math., 60 (2015), 343–353. https://doi.org/10.1007/s10492-015-0100-z doi: 10.1007/s10492-015-0100-z
|
| [14] |
L. Bouchal, K. Mebarki, S. G. Georgiev, Existence of solutions for boundary value problems for first order impulsive difference equations, Bol. Soc. Parana. Mat., 42 (2024), 13. https://doi.org/10.5269/bspm.62844 doi: 10.5269/bspm.62844
|
| [15] |
Z. M. Guo, J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506–515. https://doi.org/10.1360/03ys9051 doi: 10.1360/03ys9051
|
| [16] |
J. M. Zhang, S. L. Wang, J. S. Liu, Y. R. Cheng, Multiple periodic solutions for resonant difference equations, Adv. Differ. Equ., 2014 (2014), 236. https://doi.org/10.1186/1687-1847-2014-236 doi: 10.1186/1687-1847-2014-236
|
| [17] | H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, J. Appl. Math. Comput., 48 (2015), 157–171. |
| [18] | X. Liu, Y. B. Zhang, H. P. Shi, X. Q. Deng, Periodic solutions for fourth-order nonlinear functional difference equations, Math. Method. Appl. Sci., 38 (2015), 1–10. |
| [19] |
Z. Zhou, J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Sin., 29 (2013), 1809–1822. https://doi.org/10.1007/s10114-013-0736-0 doi: 10.1007/s10114-013-0736-0
|
| [20] |
G. H. Lin, Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1723–1747. https://doi.org/10.3934/cpaa.2018082 doi: 10.3934/cpaa.2018082
|
| [21] |
P. Mei, Z. Zhou, Homoclinic solutions for partial difference equations with mixed nonlinearities, J. Geom. Anal., 33 (2023), 117. https://doi.org/10.1007/s12220-022-01166-w doi: 10.1007/s12220-022-01166-w
|
| [22] |
S. H. Wang, Z. Zhou, Heteroclinic solutions for a difference equation involving the mean curvature operator, Appl. Math. Lett., 147 (2024), 108827. https://doi.org/10.1016/j.aml.2023.108827 doi: 10.1016/j.aml.2023.108827
|
| [23] | O. Hammouti, S. Taarabti, R. P. Agarwal, Anisotropic discrete boundary value problems, Appl. Anal. Discr. Math., 17 (2023), 232–248. |
| [24] |
G. Bonanno, B. D. Bella, A fourth-order boundary value problem for a Sturm-Liouville type equation, Appl. Math. Comput., 217 (2010), 3635–3640. https://doi.org/10.1016/j.amc.2010.10.019 doi: 10.1016/j.amc.2010.10.019
|
| [25] |
G. D'Aguì, J. Mawhin, A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with $p$-Laplacian, J. Math. Anal. Appl., 447 (2017), 383–397. https://doi.org/10.1016/j.jmaa.2016.10.023 doi: 10.1016/j.jmaa.2016.10.023
|
| [26] |
Z. Zhou, J. X. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_c$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016
|
| [27] |
Z. Zhou, Y. S. Chen, J. S. Yu, Positive solutions for a discrete Dirichlet problem involving the mean curvature operator, J. Differ. Equ. Appl., 31 (2025), 825–840. https://doi.org/10.1080/10236198.2025.2480082 doi: 10.1080/10236198.2025.2480082
|
| [28] | T. L. Chen, R. Y. Ma, Y. W. Liang, Multiple positive solutions of second-order nonlinear difference equations with discrete singular $\varphi$-Laplacian, J. Differ. Equ. Appl., 25 (2019), 38–55. |
| [29] |
Z. H. Qiu, On the multiplicity of solutions for the discrete boundary problem involving the singular $\phi$-Laplacian, J. Funct. Spaces, 2021 (2021), 7013733. https://doi.org/10.1155/2021/7013733 doi: 10.1155/2021/7013733
|
| [30] |
F. Xiong, Z. Zhou, Three solutions to Dirichlet problems for second-order self-adjoint difference equations involving $p$-Laplacian, Adv. Differ. Equ., 2021 (2021), 1–15. https://doi.org/10.1186/s13662-021-03350-8 doi: 10.1186/s13662-021-03350-8
|
| [31] |
G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992–3007. https://doi.org/10.1016/j.na.2011.12.003 doi: 10.1016/j.na.2011.12.003
|
| [32] |
L. Q. Jiang, Z. Zhou, Three solutions to Dirichlet boundary value problems for $p$-Laplacian difference equations, Adv. Differ. Equ., 2008 (2007), 1–10. https://doi.org/10.1155/2008/345916 doi: 10.1155/2008/345916
|
| [33] |
G. Bonanno, P. Candito, G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915–939. https://doi.org/10.1515/ans-2014-0406 doi: 10.1515/ans-2014-0406
|
| [34] |
W. H. Zhang, Z. Zhou, Infinitely many solutions for the discrete boundary value problems of the Kirchhoff type, Symmetry, 14 (2022), 1844. https://doi.org/10.3390/sym14091844 doi: 10.3390/sym14091844
|