Dental caries is a health issue characterized by the attachment of an oral biofilm that contains bacteria to tooth surface. At present, several deterministic models have been constructed to explore numerous phenomena related to population dynamics. Despite the existing models, only two pieces of literature have explored bacterial growth in oral biofilms using ordinary differential equations with a deterministic modeling approach. Therefore, this study aims to propose a deterministic model to assess the dynamics of bacterial growth in oral biofilms, considering the interaction between the microorganisms. The model focuses on 3 bacteria, namely Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), and Veillonella spp. A mathematical assessment was performed to ensure that the obtained solutions were feasible for biological discussion. Subsequently, the ratio of S. mutans against S. sanguinis under the equilibrium was formulated as the threshold to measure the risk level of caries formation. Additionally, a sensitivity analysis was also performed to appraise the parameters' influence on the observed dynamics. The results showed that there was a positive correlation between the presence of Veillonella spp. and an increased risk of caries formation. The theory of optimal control was used to investigate the optimal scenario for intervening in the threshold ratio by considering the effect of antibacterial utilization. Lastly, a numerical simulation was conducted to confirm the analysis results and scrutinize each bacterial dynamics under several scenarios represented by the selected parameter with varied values.
Citation: Sanubari Tansah Tresna, Nursanti Anggriani, Herlina Napitupulu, Wan Muhamad Amir W. Ahmad. Exploring the dynamics of bacterial growth in oral biofilm causing dental caries: A study of deterministic modeling[J]. AIMS Mathematics, 2025, 10(8): 17894-17921. doi: 10.3934/math.2025797
Dental caries is a health issue characterized by the attachment of an oral biofilm that contains bacteria to tooth surface. At present, several deterministic models have been constructed to explore numerous phenomena related to population dynamics. Despite the existing models, only two pieces of literature have explored bacterial growth in oral biofilms using ordinary differential equations with a deterministic modeling approach. Therefore, this study aims to propose a deterministic model to assess the dynamics of bacterial growth in oral biofilms, considering the interaction between the microorganisms. The model focuses on 3 bacteria, namely Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), and Veillonella spp. A mathematical assessment was performed to ensure that the obtained solutions were feasible for biological discussion. Subsequently, the ratio of S. mutans against S. sanguinis under the equilibrium was formulated as the threshold to measure the risk level of caries formation. Additionally, a sensitivity analysis was also performed to appraise the parameters' influence on the observed dynamics. The results showed that there was a positive correlation between the presence of Veillonella spp. and an increased risk of caries formation. The theory of optimal control was used to investigate the optimal scenario for intervening in the threshold ratio by considering the effect of antibacterial utilization. Lastly, a numerical simulation was conducted to confirm the analysis results and scrutinize each bacterial dynamics under several scenarios represented by the selected parameter with varied values.
| [1] | Oral health, WHO, 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/oral-health. |
| [2] |
M. A. Peres, L. M. D. Macpherson, R. J. Weyant, B. Daly, M. R. Mathur, S. Listl, et al., Oral disease: A global public health challenge, Lancet, 394 (2019), 249–260. https://doi.org/10.1016/S0140-6736(19)31146-8 doi: 10.1016/S0140-6736(19)31146-8
|
| [3] |
W. Qiu, Y. Zhou, Z. Li, T. Huang, Y. Xiao, L. Cheng, et al., Application of antibiotics/antimicrobial agents on dental caries, BioMed Res. Int., 2020 (2020), 5658212. https://doi.org/10.1155/2020/5658212 doi: 10.1155/2020/5658212
|
| [4] |
A. M. Martini, B. S. Moricz, L. J. Woods, B. D. Jones, Type Ⅳ pili of Streptococcus sanguinis contribute to pathogenesis in experimental infective endocarditis, Microbiol. Spectr., 9 (2021), e01752-21. https://doi.org/10.1128/spectrum.01752-21 doi: 10.1128/spectrum.01752-21
|
| [5] | Z. Ling, H. Tao, Dental caries and systemic diseases, Berlin: Springer, 2016. https://doi.org/10.1007/978-3-662-47450-1_8 |
| [6] |
G. Aarabi, G. Thomalla, G. Heydecke, U. Seedorf, Chronic oral infection: An emerging risk factor of cerebral small vessel disease, Oral Dis., 25 (2019), 710–719. https://doi.org/10.1111/odi.12912 doi: 10.1111/odi.12912
|
| [7] |
A. M. Martini, B. S. Moricz, A. K. Ripperger, P. M. Tran, M. E. Sharp, A. N. Forsythe, et al., Association of novel Streptococcus sanguinis virulence factors with pathogenesis in a native valve infective endocarditis model, Front. Microbiol., 11 (2020), 10. https://doi.org/10.3389/fmicb.2020.00010 doi: 10.3389/fmicb.2020.00010
|
| [8] |
P. D. Marsh, Dental plaque as a biofilm and a microbial community-Implications for health and disease, BMC Oral Health, 6 (2006), S14. https://doi.org/10.1186/1472-6831-6-S1-S14 doi: 10.1186/1472-6831-6-S1-S14
|
| [9] |
N. B. Pitts, D. T. Zero, P. D. Marsh, K. Ekstrand, J. A. Weintraub, F. Ramos-Gomez, et al., Dental caries, Nat. Rev. Dis. Primers, 3 (2017), 17030. https://doi.org/10.1038/nrdp.2017.30 doi: 10.1038/nrdp.2017.30
|
| [10] |
Y. Zhu, Y. Wang, S. Zhang, J. Li, X. Li, Y. Ying, et al., Association of polymicrobial interactions with dental caries development and prevention, Front. Microbiol., 14 (2023), 1162380. https://doi.org/10.3389/fmicb.2023.1162380 doi: 10.3389/fmicb.2023.1162380
|
| [11] |
I. Mashima, F. Nakazawa, The influence of oral Veillonella species on biofilms formed by Streptococcus species, Anaerobe, 28 (2014), 54–61. https://doi.org/10.1016/j.anaerobe.2014.05.003 doi: 10.1016/j.anaerobe.2014.05.003
|
| [12] |
W. H. Bowen, R. A. Burne, H. Wu, H. Koo, Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments, Trends Microbiol., 26 (2018), 229–242. https://doi.org/10.1016/j.tim.2017.09.008 doi: 10.1016/j.tim.2017.09.008
|
| [13] |
P. Zhou, D. Manoil, G. N. Belibasakis, G. A. Kotsakis, Veillonellae: beyond bridging species in oral biofilm ecology, Front. Oral Heal., 2 (2021), 774115. https://doi.org/10.3389/froh.2021.774115 doi: 10.3389/froh.2021.774115
|
| [14] |
D. P. Wicaksono, J. Washio, Y. Abikoa, D. Hitomi, T. Nobuhiro, Nitrite production from nitrate and its link with lactate metabolism in oral veillonella spp, Appl. Environ. Microbiol., 86 (2020), e01255-20. https://doi.org/10.1128/AEM.01255-20 doi: 10.1128/AEM.01255-20
|
| [15] |
T. Do, D. Devine, P. D. Marsh, Oral biofilms: Molecular analysis, challenges, and future prospects in dental diagnostics, Clin. Cosmet. Investig. Dent., 5 (2013), 11–19. https://doi.org/10.2147/CCIDE.S31005 doi: 10.2147/CCIDE.S31005
|
| [16] | R. J. Kolenbrander, P. E.; Jakubovics, N. S. Chalmers, N. I.; Palmer, Human Oral multispecies biofilms: bacterial communities in health and disease, Biofilm Mode Life Mech. Adapt., 2007,175–190. |
| [17] |
Y. Zhang, J. Fang, J. Yang, X. Gao, L. Dong, X. Zheng, et al., Streptococcus mutans-associated bacteria in dental plaque of severe early childhood caries, J. Oral Microbiol., 14 (2022), 2046309. https://doi.org/10.1080/20002297.2022.2046309 doi: 10.1080/20002297.2022.2046309
|
| [18] |
P. M. Corby, J. Lyons-Weiler, W. A. Bretz, T. C. Hart, J. A. Aas, T. Boumenna, et al., Microbial risk indicators of early childhood caries, J. Clin. Microbiol., 43 (2005), 5753–5759. https://doi.org/10.1128/JCM.43.11.5753-5759.2005 doi: 10.1128/JCM.43.11.5753-5759.2005
|
| [19] |
A. L. Melok, L. H. Lee, S. A. M. Yussof, T. Chu, Green tea polyphenol epigallocatechin-3-gallate-stearate inhibits the growth of streptococcus mutans: A promising new approach in caries prevention, Dent. J., 6 (2018), 38. https://doi.org/10.3390/dj6030038 doi: 10.3390/dj6030038
|
| [20] |
A. S. Setiawan, R. R. Darwita, S. Susilawati, D. A. Maharani, A. A. Djais, Risk factors for early childhood caries based on identification of Veillonella spp. Using RT-PCR, Pesqui. Bras. Odontopediatria Clin. Integr., 20 (2020), 147. https://doi.org/10.1590/pboci.2020.147 doi: 10.1590/pboci.2020.147
|
| [21] |
K. Havsed, G. Hänsel Petersson, P. E. Isberg, M. Pigg, G. Svensäter, M. Rohlin, Multivariable prediction models of caries increment: a systematic review and critical appraisal, Syst. Rev., 12 (2023), 202. https://doi.org/10.1186/s13643-023-02298-y doi: 10.1186/s13643-023-02298-y
|
| [22] |
V. P. Mathur, J. K. Dhillon, Dental caries: a disease which needs attention, Indian J. Pediatr., 85 (2018), 202–206. https://doi.org/10.1007/s12098-017-2381-6 doi: 10.1007/s12098-017-2381-6
|
| [23] |
S. Czajkowska, N. Potempa, J. Rupa-Matysek, A. Surdacka, Preventing the suspension of dental clinics by minimizing the risk of SARS-CoV-2 transmission during dental treatment, Dent. Med. Probl., 58 (2021), 397–403. https://doi.org/10.17219/dmp/133442 doi: 10.17219/dmp/133442
|
| [24] |
G. Cherukuri, C. Veeramachaneni, G. V. Rao, V. B. Pacha, S. B. Balla, Insight into status of dental caries vaccination: A review, J. Conserv. Dent., 23 (2020), 544–549. https://doi.org/10.4103/JCD.JCD_402_20 doi: 10.4103/JCD.JCD_402_20
|
| [25] | M. Patel, Dental caries vaccine: Are we there yet? Lett. Appl. Microbiol., 70 (2020), 2–12. https://doi.org/10.1111/lam.13218 |
| [26] |
V. T. Sakai, T. M. Oliveira, T. C. Silva, A. B. S. Moretti, D. Geller-Palti, V. A. Biella, et al., Knowledge and attitude of parents or caretakers regarding transmissibility os caries disease, J. Appl. Oral Sci., 16 (2008), 150–154. https://doi.org/10.1590/S1678-77572008000200013 doi: 10.1590/S1678-77572008000200013
|
| [27] |
X. Kuang, V. Chen, X. Xu, Novel approaches to the control of oral microbial biofilms, Biomed Res. Int., 2018 (2018), 6498932. https://doi.org/10.1155/2018/6498932 doi: 10.1155/2018/6498932
|
| [28] |
E. T. Lofgren, M. E. Halloran, C. M. Rivers, J. M. Drake, T. C. Porco, B. Lewis, et al., Opinion: mathematical models: a key tool for outbreak response, Proc. Natl. Acad. Sci. U. S. A., 111 (2014), 18095–18096. https://doi.org/10.1073/pnas.1421551111 doi: 10.1073/pnas.1421551111
|
| [29] |
B. D. Pandey, K. Pandeya, B. Neupane, Y. Shah, K. P. Adhikary, I. Gautam, et al., Persistent dengue emergence: The 7 years surrounding the 2010 epidemic in Nepal, Trans. R. Soc. Trop. Med. Hyg., 109 (2015), 775–782. https://doi.org/10.1093/trstmh/trv087 doi: 10.1093/trstmh/trv087
|
| [30] |
D. Stanescu, B. M. Chen-Charpentier, Random coefficient differential equation models for bacterial growth, Math. Comput. Model., 50 (2009), 885–895. https://doi.org/10.1016/j.mcm.2009.05.017 doi: 10.1016/j.mcm.2009.05.017
|
| [31] |
M. Scott, T. Hwa, Bacterial growth laws and their applications, Curr. Opin. Biotechnol., 22 (2011), 559–565. https://doi.org/10.1016/j.copbio.2011.04.014 doi: 10.1016/j.copbio.2011.04.014
|
| [32] |
E. Ibargüen-Mondragón, S. Mosquera, M. Cerón, E. M. Burbano-Rosero, S. P. Hidalgo-Bonilla, L. Esteva, et al., Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations, Biosyst., 117 (2014), 60–67. https://doi.org/10.1016/j.biosystems.2014.01.005 doi: 10.1016/j.biosystems.2014.01.005
|
| [33] |
N. G. Cogan, H. Rath, N. Kommerein, S. N. Stumpp, M. Stiesch, Theoretical and experimental evidence for eliminating persister bacteria by manipulating killing timing, FEMS Microbiol. Lett., 363 (2016), 264. https://doi.org/10.1093/femsle/fnw264 doi: 10.1093/femsle/fnw264
|
| [34] |
C. Benjamín, P. Luis, C. L. Fernando, Modeling the effects of pH variation and bacteriocin synthesis on bacterial growth, Appl. Math. Model., 110 (2022), 285–297. https://doi.org/10.1016/j.apm.2022.05.014 doi: 10.1016/j.apm.2022.05.014
|
| [35] |
A. M. Smith, J. A. McCullers, F. R. Adler, Mathematical model of a three-stage innate immune response to a pneumococcal lung infection, J. Theor. Biol., 276 (2011), 106–116. https://doi.org/10.1016/j.jtbi.2011.01.052 doi: 10.1016/j.jtbi.2011.01.052
|
| [36] |
M. Cantone, G. Santos, P. Wentker, X. Lai, J. Vera, Multiplicity of mathematical modeling strategies to search for molecular and cellular insights into bacteria lung infection, Front. Physiol., 8 (2017), 645. https://doi.org/10.3389/fphys.2017.00645 doi: 10.3389/fphys.2017.00645
|
| [37] | E. Domínguez-Hüttinger, N. J. Boon, T. B. Clarke, R. J. Tanaka, Mathematical modeling of Streptococcus pneumoniae colonization, invasive infection and treatment, Front. Physiol., 8 (2017), 115. https://doi.org/10.3389/fphys.2017.00115 |
| [38] |
S. T. Tresna, N. Anggriani, H. Napitupulu, W. M. A. W. Ahmad, Deterministic modeling of the issue of dental caries and oral bacterial growth: A brief review, Mathematics, 12 (2024), 2218. https://doi.org/10.3390/math12142218 doi: 10.3390/math12142218
|
| [39] |
Y. Shen, J. Zhao, C. De La Fuente-Núñez, Z. Wang, R. E. W. Hancock, C. R. Roberts, et al., Experimental and theoretical investigation of multispecies oral biofilm resistance to chlorhexidine treatment, Sci. Rep., 6 (2016), 27537. https://doi.org/10.1038/srep27537 doi: 10.1038/srep27537
|
| [40] |
X. Jing, X. Huang, M. Haapasalo, Y. Shen, Q. Wang, Modeling oral multispecies biofilm recovery after antibacterial treatment, Sci. Rep., 9 (2019), 804. https://doi.org/10.1038/s41598-018-37170-w doi: 10.1038/s41598-018-37170-w
|
| [41] |
X. Yang, R. Liu, J. Zhu, T. Luo, Y. Zhan, C. Li, et al., Evaluating the microbial aerosol generated by dental instruments: addressing new challenges for oral healthcare in the hospital infection, BMC Oral Health, 23 (2023), 409. https://doi.org/10.1186/s12903-023-03109-5 doi: 10.1186/s12903-023-03109-5
|
| [42] |
N. B. Pitts, S. Twetman, J. Fisher, P. D. Marsh, Understanding dental caries as a non-communicable disease, Br. Dent. J., 231 (2021), 749–753. https://doi.org/10.1038/s41415-021-3775-4 doi: 10.1038/s41415-021-3775-4
|
| [43] |
A. M. Abram, M. M. Szewczyk, S. G. Park, S. S. Sam, H. B. Eldana, F. J. Koria, et al., A co-association of Streptococcus mutans and Veillonella parvula/dispar in root caries patients and in vitro biofilms, Infect. Immun., 90 (2022), e00355-22. https://doi.org/10.1128/iai.00355-22 doi: 10.1128/iai.00355-22
|
| [44] |
N. D. Teixeira, A. K. Almeida de Lima, T. Do, C. M. Stefani, Meta-analysis using NGS data: The Veillonella species in dental caries, Front. Oral Heal., 2 (2021), 770917. https://doi.org/10.3389/froh.2021.770917 doi: 10.3389/froh.2021.770917
|
| [45] |
A. Villhauer, D. Lynch, J. Warren, D. Drake, Assessment of diversity and fidelity of transmission of streptococcus mutans genotypes in American Indian and Southeast Iowa mother-child dyads, Front. Dent. Med., 3 (2022), 871185. https://doi.org/10.3389/fdmed.2022.871185 doi: 10.3389/fdmed.2022.871185
|
| [46] |
L. Y. Zheng, A. Itzek, Z. Y. Chen, J. Kreth, Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis, Int. J. Oral Sci., 3 (2011), 82–89. https://doi.org/10.4248/IJOS11030 doi: 10.4248/IJOS11030
|
| [47] |
B. Zhu, L. C. Macleod, T. Kitten, P. Xu, Streptococcus sanguinis biofilm formation & interaction with oral pathogens, Future Microbiol., 13 (2018), 915–932. https://doi.org/10.2217/fmb-2018-0043 doi: 10.2217/fmb-2018-0043
|
| [48] | G. J. Mount, W. R. Hume, H. C. Ngo, M. S. Wolff, Preservation and restoration of tooth structure, 3 Eds., New York: Wiley Blackwell, 2016. |
| [49] | J. A. Lemos, S. R. Palmer, L. Zeng, Z. T. Wen, J. K. Kajfasz, I. A. Freires, et al., The Biology of Streptococcus mutans, Microbiol. Spectr., 176 (2018), 139–148. https://doi.org/10.1128/microbiolspec.GPP3-0051-2018 |
| [50] | W. Kondo, Significant correlations between the bulk of the desquamated epithelium, Lactobacillus, Streptococcus, and Veillonella counts of the human mouth, Jpn. J. Microbiol., 6 (1962), 41–52. https://doi.org/10.1111/j.1348-0421.1962.tb00237.x |
| [51] |
P. Zhou, X. Li, I. Huang, F. Qi, Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments, Environ. Microbiol., 83 (2017), e01079-17. https://doi.org/10.1128/AEM.01079-17 doi: 10.1128/AEM.01079-17
|
| [52] | H. T. Pramesti, Streptococcus sanguinis as an opportunistic bacteria in human oral cavity: Adherence, colonization, and invasion, Padjadjaran J. Dent., 28 (2016), 13515. https://doi.org/10.24198/pjd.vol28no1.13515 |
| [53] | B. Erick, M. Mayengo, Modelling the dynamics of Cassava Mosaic Disease with non-cassava host plants, Informat. Med. Unlocked, 33 (2022) 101086. https://doi.org/10.1016/j.imu.2022.101086 |
| [54] |
S. Daudi, L. Luboobi, M. Kgosimore, D. Kuznetsov, Modelling the control of the impact of Fall Armyworm (Spodoptera frugiperda) infestations on maize production, Int. J. Differ. Equ., 2021 (2021), 8838089. https://doi.org/10.1155/2021/8838089 doi: 10.1155/2021/8838089
|
| [55] |
F. Forouzannia, A. B. Gumel, Mathematical analysis of an age-structured model for malaria transmission dynamics, Math. Biosci., 247 (2014), 80–94. https://doi.org/10.1016/j.mbs.2013.10.011 doi: 10.1016/j.mbs.2013.10.011
|
| [56] |
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
|
| [57] | R. Xu, Z. Wang, F. Zhang, Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay, Appl. Math. Comput., 269 (2015) 332–342. https://doi.org/10.1016/j.amc.2015.07.084 |
| [58] |
J. Roy, M. Banerjee, Global stability of a predator-prey model with generalist predator, Appl. Math. Lett., 142 (2023), 108659. https://doi.org/10.1016/j.aml.2023.108659 doi: 10.1016/j.aml.2023.108659
|
| [59] |
H. Li, G. Liu, L. Xiong, Z. Liang, X. Zhong, Meta-reinforcement learning for controlling malware propagation in internet of Underwater Things, IEEE Trans. Netw. Sci. Eng., 2025. https://doi.org/10.1109/TNSE.2025.3572050 doi: 10.1109/TNSE.2025.3572050
|
| [60] |
S. Shen, L. Xie, Y. Zhang, G. Wu, H. Zhang, S. Yu, Joint differential game and double deep Q-Networks for suppressing malware spread in industrial internet of things, IEEE Trans. Inf. Forensics Secur., 18 (2023), 5302–5315. https://doi.org/10.1109/TIFS.2023.3307956 doi: 10.1109/TIFS.2023.3307956
|