Research article Special Issues

On the global behavior and the periodicity of the solutions of a $ k $-dimensional system of difference equations

  • Received: 03 May 2025 Revised: 03 June 2025 Accepted: 17 June 2025 Published: 07 August 2025
  • MSC : 39A05, 39A23, 39A30

  • In this work, we provide a detailed study on the behavior of solutions of a $ k $-dimensional system of rational difference equations, extending some existing results in the literature. We use the linearized stability theory to establish conditions for the local stability of the corresponding unique equilibrium point, and to show its global stability, we prove that the equilibrium point is a global attractor. Also, conditions for the existence of periodic solutions are provided. Our obtained results are confirmed by some examples.

    Citation: Mouataz Billah Mesmouli, Nouressadat Touafek, Ioan-Lucian Popa, Abdelkader Moumen, Taher S. Hassan. On the global behavior and the periodicity of the solutions of a $ k $-dimensional system of difference equations[J]. AIMS Mathematics, 2025, 10(8): 17940-17953. doi: 10.3934/math.2025799

    Related Papers:

  • In this work, we provide a detailed study on the behavior of solutions of a $ k $-dimensional system of rational difference equations, extending some existing results in the literature. We use the linearized stability theory to establish conditions for the local stability of the corresponding unique equilibrium point, and to show its global stability, we prove that the equilibrium point is a global attractor. Also, conditions for the existence of periodic solutions are provided. Our obtained results are confirmed by some examples.



    加载中


    [1] M. Kara, Y. Yazlik, Solvability of a system of non-linear difference equations of higher order, Turk. J. Math., 43 (2019), 1533–1565. http://doi.org/10.3906/mat-1902-24 doi: 10.3906/mat-1902-24
    [2] M. Gümüş, R. A. Zeid, An explicit formula and forbidden set for a higher order difference equation, J. Appl. Math. Comput., 63 (2020), 133–142. http://doi.org/10.1007/s12190-019-01311-9 doi: 10.1007/s12190-019-01311-9
    [3] M. Berkal, K. Berehal, N. Rezaiki, Representation of solutions of a system of five-order nonlinear difference equations, J. Appl. Math. Inform., 40 (2022), 409–431. http://doi.org/10.14317/jami.2022.409 doi: 10.14317/jami.2022.409
    [4] M. Berkal, J. F. Navarro, Qualitative study of a second order difference equation, Turk. J. Math., 47 (2023), 516–527. http://doi.org/10.55730/1300-0098.3375 doi: 10.55730/1300-0098.3375
    [5] S. Kaouache, M. Feckan, Y. Halim, A. Khelifa, Theoretical analysis of higher-order system of difference equations with generalized balancing numbers, Math. Slovaca, 74 (2024), 691–702. http://doi.org/10.1515/ms-2024-0052 doi: 10.1515/ms-2024-0052
    [6] J. T. Kubayi, M. F. Gbetoula, A detailed study of a class of recurrence equations with a generalized order, J. Math. Comput. Sci., 32 (2024), 318–331. http://doi.org/10.22436/jmcs.032.04.03 doi: 10.22436/jmcs.032.04.03
    [7] K. Mkhwanazi, M. F. Gbetoula, Invariance analysis and dynamics of difference equations, J. Appl. Nonlinear Dyn., 14 (2025), 483–498. http://doi.org/10.5890/JAND.2025.06.015 doi: 10.5890/JAND.2025.06.015
    [8] S. Abualrub, M. Aloqeili, Dynamics of the system of difference equations $x_{n+1} = A+\frac{y_{n-k}}y_n, y_{n+1} = B+\frac{x_{n-k}}x_n$, Qual. Theor. Dyn. Syst., 19 (2020), 69. http://doi.org/10.1007/s12346-020-00408-y doi: 10.1007/s12346-020-00408-y
    [9] E. Beso, S. Kalabusic, N. Mujic, E. Pilav, Boundedness of solutions and stability of certain second-order difference equation with quadratic term, Adv. Differ. Equ., 19 (2020). http://doi.org/10.1186/s13662-019-2490-9
    [10] Q. Zhang, L. Shen, Global asymptotic stability and trajectory structure rules of high-order nonlinear difference equation, AIMS Math., 9 (2024), 28256–28272. http://doi.org/10.3934/math.20241370 doi: 10.3934/math.20241370
    [11] T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., 71 (2025), 3861–3889. http://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
    [12] K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. http://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
    [13] Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers equation, Comput. Appl. Math., 44 (2025), 257. http://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
    [14] N. Touafek, On a general system of difference equations defined by homogeneous functions, Math. Slovaca, 71 (2021), 697–720. http://doi.org/10.1515/ms-2021-0014 doi: 10.1515/ms-2021-0014
    [15] N. Touafek, D. T. Tollu, Y. Akrour, On a general homogeneous three-dimensional system of difference equations, Electron. Res. Arch., 29 (2021), 2841–2876. http://doi.org/10.3934/era.2021017 doi: 10.3934/era.2021017
    [16] H. Zabat, N. Touafek, I. Dekkar, Global behavior of a rational system of difference equations with arbitrary powers, J. Appl. Math. Comput., 71 (2025), 1673–1691. http://doi.org/10.1007/s12190-024-02304-z doi: 10.1007/s12190-024-02304-z
    [17] S. Elaydi, An introduction to difference equations, Undergraduate Texts in Mathematics, Springer, 2005.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(521) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog