Research article Special Issues

Investigating novel soliton solutions and chaotic Structures for the (3+1)-dimensional fractional q-deformed tanh-Gordon model

  • Received: 17 January 2025 Revised: 18 May 2025 Accepted: 20 May 2025 Published: 06 August 2025
  • MSC : 35Q51, 35C08, 37D45, 37G25

  • The generalized (3+1)-dimensional fractional q-deformed tanh-Gordon model and its optical solutions are studied under various physical conditions. Verifying our analytical findings and using the modified Sardar-sub equation technique (SSET) to examine the behavior of the governing model through convergence criteria under different parameters of the hyperbolic local derivative. By generating diverse optical phenomena and flexibility of the governing model, our findings pave the way for additional theoretical and applied physics research. The objective is also to study the bifurcation and chaotic behavior of the equation. To accomplish this, a dynamical system is created using the Galilean transformation. Analyzing the bifurcation and chaotic structure of the equation to identify important transitions that lead to chaotic behavior, and using phase-space analysis to understand the system's unpredictability. The study shows how small adjustments can have a significant effect on the results. This study clarifies the behavior of the model, which is crucial for several applications in quantum mechanics, physics, and optics.

    Citation: Ayesha Naseem, Rashida Hussain. Investigating novel soliton solutions and chaotic Structures for the (3+1)-dimensional fractional q-deformed tanh-Gordon model[J]. AIMS Mathematics, 2025, 10(8): 17779-17800. doi: 10.3934/math.2025793

    Related Papers:

  • The generalized (3+1)-dimensional fractional q-deformed tanh-Gordon model and its optical solutions are studied under various physical conditions. Verifying our analytical findings and using the modified Sardar-sub equation technique (SSET) to examine the behavior of the governing model through convergence criteria under different parameters of the hyperbolic local derivative. By generating diverse optical phenomena and flexibility of the governing model, our findings pave the way for additional theoretical and applied physics research. The objective is also to study the bifurcation and chaotic behavior of the equation. To accomplish this, a dynamical system is created using the Galilean transformation. Analyzing the bifurcation and chaotic structure of the equation to identify important transitions that lead to chaotic behavior, and using phase-space analysis to understand the system's unpredictability. The study shows how small adjustments can have a significant effect on the results. This study clarifies the behavior of the model, which is crucial for several applications in quantum mechanics, physics, and optics.



    加载中


    [1] S. Javed, A. Ali, J. Ahmad, R. Hussain, Study the dynamic behavior of bifurcation, chaos, time series analysis and soliton solutions to a Hirota model, Opt. Quant. Electron., 55 (2023), 1114. https://doi.org/10.1007/s11082-023-05358-8 doi: 10.1007/s11082-023-05358-8
    [2] T. Rasool, R. Hussain, M. A. Al Sharif, W. Mahmoud, M. S. Osman, A variety of optical soliton solutions for the M-truncated Paraxial wave equation using Sardar-subequation technique, Opt. Quant. Electron., 55 (2023), 396. https://doi.org/10.1007/s11082-023-04655-6 doi: 10.1007/s11082-023-04655-6
    [3] M. H. Rafiq, A. Jhangeer, N. Raza, The analysis of solitonic, super non linear, periodic, quasi periodic, bifurcation and chaotic patterns of perturbed Gerdjikov–Ivanov model with full nonlinearity, Commun. Nonlinear Sci., 116 (2023), 106818. https://doi.org/10.1016/j.cnsns.2022.106818 doi: 10.1016/j.cnsns.2022.106818
    [4] D. Baleanu, A. Jajarmi, S. S. Sajjadi, J. H. Asad, The fractional features of a harmonic oscillator with position-dependent mass, Commun. Theor. Phys., 72 (2020), 055002. https://doi.org/10.1088/1572-9494/ab7700 doi: 10.1088/1572-9494/ab7700
    [5] R. Hussain, A. Naseem, S. Javed, Analytical and numerical investigation for a new generalized q-deformed sinh-Gordon equation, Opt. Quant. Electron., 56 (2024), 818. https://doi.org/10.1007/s11082-024-06624-z doi: 10.1007/s11082-024-06624-z
    [6] M. N. Rafiq, H. Chen, Multiple interaction solutions, parameter analysis, chaotic phenomena and modulation instability for a (3+1)-dimensional Kudryashov–Sinelshchikov equation in ideal liquid with gas bubbles, Nonlinear Dynam., 2024, 1–24.
    [7] A. Ali, J. Ahmad, S. Javed, Exact soliton solutions and stability analysis to (3+1)-dimensional nonlinear Schrödinger model, Alex. Eng. J., 76 (2023), 747–756. https://doi.org/10.1016/j.aej.2023.06.067 doi: 10.1016/j.aej.2023.06.067
    [8] S. Zhang, T. Xia, A generalized new auxiliary equation method and its applications to nonlinear partial differential equations, Physics Lett. A, 363 (2007), 356–360. https://doi.org/10.1016/j.physleta.2006.11.035 doi: 10.1016/j.physleta.2006.11.035
    [9] S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, CRC press, 2018.
    [10] B. B. Thomas, G. Betchewe, K. K. Victor, K. T. Crepin, On periodic wave solutions to (1+1)-dimensional nonlinear physical models using the sine-cosine method, Acta Appl. Math., 110 (2010), 945–953. https://doi.org/10.1007/s10440-009-9487-4 doi: 10.1007/s10440-009-9487-4
    [11] A. M. Wazwaz, Two reliable methods for solving variants of the KdV equation with compact and noncompact structures, Chaos Soliton. Fract., 28 (2006), 454–462. https://doi.org/10.1016/j.chaos.2005.06.004 doi: 10.1016/j.chaos.2005.06.004
    [12] E. Yomba, The modified extended Fan sub-equation method and its application to the (2+1)-dimensional Broer–Kaup–Kupershmidt equation, Chaos Soliton. Fract., 27 (2006), 187–196. https://doi.org/10.1016/j.chaos.2005.03.021 doi: 10.1016/j.chaos.2005.03.021
    [13] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [14] M. A. Abdou, The extended sech method and its applications for solving nonlinear physical models, Appl. Math. Comput., 190 (2007), 988–996. https://doi.org/10.1016/j.amc.2007.01.070 doi: 10.1016/j.amc.2007.01.070
    [15] J. Zhang, X. Wei, Y. Lu, A generalized $(\frac{G'}{G})$-expansion method and its applications, Phys. Lett. A, 372 (2008), 3653–3658. https://doi.org/10.1016/j.physleta.2008.02.027 doi: 10.1016/j.physleta.2008.02.027
    [16] K. Hosseini, A. Bekir, R. Ansari, Exact solutions of nonlinear time-fractional Boussinesq equations using the $\exp\left (-\phi\right)$-expansion method, Opt. Quant. Electron., 49 (2017), 1–11. https://doi.org/10.1007/s11082-017-0968-9 doi: 10.1007/s11082-017-0968-9
    [17] Y. Yıldırım, Optical solitons with Biswas–Arshed equation by F-expansion method, Optik, 227 (2021), 165788. https://doi.org/10.1016/j.ijleo.2020.165788 doi: 10.1016/j.ijleo.2020.165788
    [18] P. Capetillo, J. Hornewall, Introduction to the Hirota direct method, 2021.
    [19] V. Marchenko, The inverse scattering problem and its application to NLPDE, In Scattering, Academic Press, 2002, 1695–1706. https://doi.org/10.1016/B978-012613760-6/50094-2
    [20] M. Makaryan, Generalized darboux transformation and nth, Doctoral dissertation, California State University, Northridge, 2016.
    [21] M. Khater, S. Anwar, K. U. Tariq, M. S. Mohamed, Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method, AIP Adv., 11 (2021). https://doi.org/10.1063/5.0038671
    [22] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015, 1–17. https://doi.org/10.1186/s13662-015-0452-4
    [23] M. Younis, N. Cheemaa, S. A. Mahmood, S. T. Rizvi, On optical solitons: The chiral nonlinear Schrödinger equation with perturbation and Bohm potential, Opt. Quant. Electron., 48 (2016), 1–14. https://doi.org/10.1007/s11082-016-0809-2 doi: 10.1007/s11082-016-0809-2
    [24] U. Aglietti, L. Griguolo, R. Jackiw, S. Y. Pi, D. Seminara, Anyons and chiral solitons on a line, Phys. Rev. Lett., 77 (1996), 4406. https://doi.org/10.1103/PhysRevLett.77.4406 doi: 10.1103/PhysRevLett.77.4406
    [25] Y. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov's equation with third-order dispersion, Nonlinear Dynam., 112 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
    [26] Y. Kai, L. Huang, Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis–Procesi model, Nonlinear Dynam., 111 (2023), 8687–8700. https://doi.org/10.1007/s11071-023-08290-4 doi: 10.1007/s11071-023-08290-4
    [27] A. Nishino, Y. Umeno, M. Wadati, Chiral nonlinear Schrödinger equation, Chaos Soliton. Fract., 9 (1998), 1063–1069. https://doi.org/10.1016/S0960-0779(97)00184-7 doi: 10.1016/S0960-0779(97)00184-7
    [28] K. K. Ali, H. I. Alrebdi, N. A. Alsaif, A. H. Abdel-Aty, H. Eleuch, Analytical solutions for a new form of the generalized q-deformed sinh–gordon, Symmetry, 15 (2023), 470. https://doi.org/10.3390/sym15020470 doi: 10.3390/sym15020470
    [29] K. K. Ali, W. G. Alharbi, Exploring unconventional optical soliton solutions for a novel $\mathfrak {q} $-deformed mathematical model, AIMS Math., 9 (2024), 15202–15222. https://doi.org/10.3934/math.2024738 doi: 10.3934/math.2024738
    [30] K. K. Ali, M. S. Mohamed, M. Maneea, Exploring optical soliton solutions of the time fractional q-deformed Sinh-Gordon equation using a semi-analytic method, AIMS Math., 8 (2023), 27947–27968. https://doi.org/10.3934/math.20231429 doi: 10.3934/math.20231429
    [31] K. K. Ali, Investigating novel optical soliton solutions for a generalized (3+1)-dimensional q-deformed equation, Z. Angew. Math. Phys., 75 (2024), 208. https://doi.org/10.1007/s00033-024-02344-2 doi: 10.1007/s00033-024-02344-2
    [32] M. N. Rafiq, M. H. Rafiq, H. Alsaud, Chaotic response, multistability and new wave structures for the generalized coupled Whitham-Broer-Kaup-Boussinesq-Kupershmidt system with a novel methodology, Chaos Soliton. Fract., 190 (2025), 115755. https://doi.org/10.1016/j.chaos.2024.115755 doi: 10.1016/j.chaos.2024.115755
    [33] A. Jhangeer, N. Raza, A. Ejaz, M. H. Rafiq, D. Baleanu, Qualitative behavior and variant soliton profiles of the generalized P-type equation with its sensitivity visualization, Alex. Eng. J., 104 (2024), 292–305. https://doi.org/10.1016/j.aej.2024.06.046 doi: 10.1016/j.aej.2024.06.046
    [34] M. N. Rafiq, M. H. Rafiq, H. Alsaud, Diversity of soliton dynamics, positive multi-complexiton solutions and modulation instability for (3+1)-dimensional extended Kairat-X equation, Mod. Phys. Lett. B, 2025, 2550112.
    [35] M. N. Rafiq, M. H. Rafiq, H. Alsaud, New insights into the diversity of stochastic solutions and dynamical analysis for the complex cubic NLSE with $\delta$-potential through Brownian process, Commun. Theor. Phys., 2025.
    [36] Z. Li, J. Lyu, E. Hussain, Bifurcation, chaotic behaviors and solitary wave solutions for the fractional Twin-Core couplers with Kerr law non-linearity, Sci. Rep., 14 (2024), 22616. https://doi.org/10.1038/s41598-024-74044-w doi: 10.1038/s41598-024-74044-w
    [37] K. Zhang, J. Cao, Dynamic behavior and modulation instability of the generalized coupled fractional nonlinear Helmholtz equation with cubic–quintic term, Open Phys., 23 (2025), 20250144. https://doi.org/10.1515/phys-2025-0144 doi: 10.1515/phys-2025-0144
    [38] K. Zhang, J. Cao, J. Lyu, Dynamic behavior and modulation instability for a generalized nonlinear Schrödinger equation with nonlocal nonlinearity, Phys. Scripta, 100 (2024), 015262. https://doi.org/10.1088/1402-4896/ad9cfa doi: 10.1088/1402-4896/ad9cfa
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(468) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog