Research article Special Issues

A weighted inverse exponential distribution: Properties, estimation and applications

  • Received: 03 June 2025 Revised: 30 July 2025 Accepted: 31 July 2025 Published: 05 August 2025
  • MSC : 62E10, 62F10

  • In this paper, a new unimodal right-skewed weighted inverse exponential distribution is proposed to further solve the problems related to equipment life and survival analyses. Various mathematical properties are analyzed, including the survival and hazard function, tail area property, quantile function, and order statistics. Moreover, the common entropy of the proposed distribution is discussed and compared to accurately measure the information distribution and uncertainty degree of the proposed distribution. The Bayesian estimation and some common classical estimations, such as the maximum likelihood, Anderson Darling, Cramer-von mises, and Ordinary least squares estimation, are used to estimate and analyze the parameters of the proposed distribution. The Lindley approximation and Markov Chain Monte Carlo method with the Metropolis-Hastings algorithm are used to address the complexity of the Bayesian estimation. Additionally, four numerical evaluation criteria are used to compare and analyze the estimated parameters. Finally, by selecting two real datasets for fitting, the proposed distribution is proven to be more flexible and practical in comparison with other distributions. The analysis clearly shows that the proposed distribution efficiently handles these datasets.

    Citation: Haiping Ren, Jiajie Shi, Lianwu Yang, Laijun Luo. A weighted inverse exponential distribution: Properties, estimation and applications[J]. AIMS Mathematics, 2025, 10(8): 17740-17778. doi: 10.3934/math.2025792

    Related Papers:

  • In this paper, a new unimodal right-skewed weighted inverse exponential distribution is proposed to further solve the problems related to equipment life and survival analyses. Various mathematical properties are analyzed, including the survival and hazard function, tail area property, quantile function, and order statistics. Moreover, the common entropy of the proposed distribution is discussed and compared to accurately measure the information distribution and uncertainty degree of the proposed distribution. The Bayesian estimation and some common classical estimations, such as the maximum likelihood, Anderson Darling, Cramer-von mises, and Ordinary least squares estimation, are used to estimate and analyze the parameters of the proposed distribution. The Lindley approximation and Markov Chain Monte Carlo method with the Metropolis-Hastings algorithm are used to address the complexity of the Bayesian estimation. Additionally, four numerical evaluation criteria are used to compare and analyze the estimated parameters. Finally, by selecting two real datasets for fitting, the proposed distribution is proven to be more flexible and practical in comparison with other distributions. The analysis clearly shows that the proposed distribution efficiently handles these datasets.



    加载中


    [1] N. Alsadat, C. Taniş, L. P. Sapkota, A. Kumar, W. Marzouk, A. M. Gemeay, Inverse unit exponential probability distribution: classical and Bayesian inference with applications, AIP Adv., 14 (2024), 055108. https://doi.org/10.1063/5.0210828 doi: 10.1063/5.0210828
    [2] M. R. Mahmoud, A. E. Ismail, M. A. M. Ahmad, Exponential-inverse exponential [Weibull]: A new distribution, Math. Stat., 11 (2023), 308–314. https://doi.org/10.13189/ms.2023.110209 doi: 10.13189/ms.2023.110209
    [3] M. Pizon, On the distribution of the product of inverse pareto and exponential random variables, Recoletos Multidiscip. Res. J., 11 (2023), 27–31. https://doi.org/10.32871/rmrj2311.02.03 doi: 10.32871/rmrj2311.02.03
    [4] E. Chiodo, M. Fantauzzi, G. Mazzanti, The compound inverse Rayleigh as an extreme wind speed distribution and its Bayes estimation, Energies, 15 (2022), 861. https://doi.org/10.3390/en15030861 doi: 10.3390/en15030861
    [5] M. A. U. Haq, On Poisson moment exponential distribution with applications, Ann. Data Sci., 11 (2024), 137–158. https://doi.org/10.1007/s40745-022-00400-0 doi: 10.1007/s40745-022-00400-0
    [6] J. Barahona, Y. Gómez, E. G. Déniz, O. Venegas, H. Gómez, Scale mixture of exponential distribution with an application, Mathematics-Basel, 12 (2024), 156. https://doi.org/10.3390/math12010156 doi: 10.3390/math12010156
    [7] A. Z. Keller, A. R. R. Kamath, U. D. Perera, Reliability analysis of CNC machine tools, Reliab. Eng., 3 (1982), 449–473. https://doi.org/10.1016/0143-8174(82)90036-1 doi: 10.1016/0143-8174(82)90036-1
    [8] C. T. Lin, B. S. Duran, T. O. Lewis, Inverted gamma as a life distribution, Microelectron. Reliab., 29 (1989), 619–626. https://doi.org/10.1016/0026-2714(89)90352-1 doi: 10.1016/0026-2714(89)90352-1
    [9] Q. Chen, W. Gui, Statistical inference of the generalized inverted exponential distribution under joint progressively type-Ⅱ censoring, Entropy, 24 (2022), 576. https://doi.org/10.3390/e24050576 doi: 10.3390/e24050576
    [10] S. Ibrahim, B. Olalekan, H. Lawal, On the extended generalized inverse exponential distribution with its applications, J. Probab. Stat., 7 (2020), 14–27. https://doi.org/10.9734/ajpas/2020/v7i330184 doi: 10.9734/ajpas/2020/v7i330184
    [11] N. Alsadat, C. Taniş, L. P. Sapkota, A. Kumar, W. Marzouk, A. M. Gemeay, Inverse unit exponential probability distribution: Classical and Bayesian inference with applications, AIP Adv., 14 (2024), 055108. https://doi.org/10.1063/5.0210828 doi: 10.1063/5.0210828
    [12] M. N. Khan, A. Saboor, G. M. Cordeiro, M. Nazir, R. R. Pescim, A weighted Nadarajah and Haghighi distribution, UPB Sci. Bull. Ser. A Appl. Math. Phys., 80 (2018), 133–140.
    [13] G. P. Patil, C. R. Rao, Weighted distributions and size-biased sampling with applications to wild life populations and human families, Biometrics, 34 (1978), 179–189. https://doi.org/10.2307/2530008 doi: 10.2307/2530008
    [14] S. Dey, Inverted exponential distribution as a life distribution model from a Bayesian viewpoint, Data Sci. J., 6 (2007), 107–113. https://doi.org/10.2481/dsj.6.107 doi: 10.2481/dsj.6.107
    [15] G. Lugosi, S. Mendelson, Mean estimation and regression under heavy-tailed distributions: A survey, Found. Comput. Math., 19 (2019), 1145–1190. https://doi.org/10.1007/s10208-019-09427-x doi: 10.1007/s10208-019-09427-x
    [16] J. Nair, A. Wierman, B. Zwart, The fundamentals of heavy-tails: Properties, emergence, and identification, USA, New York: Association for Computing Machinery, 41 (2013), 387–388. https://doi.org/10.1145/2465529.2466587
    [17] R. Leipus, J. Šiaulys, S. Danilenko, J. Karaseviciene, Randomly stopped sums, minima and maxima for heavy-Tailed and light-tailed distributions, Axioms, 13 (2024), 355. https://doi.org/10.3390/axioms13060355 doi: 10.3390/axioms13060355
    [18] K. Cooray, Generalized Gumbel distribution, J. Appl. Stat., 37(2009), 171–179. https://doi.org/10.1080/02664760802698995 doi: 10.1080/02664760802698995
    [19] J. Moors, A quantile alternative for kurtosis, J. Roy. Stat. Soc. D., 37 (1988), 25–32. https://doi.org/10.2307/2348376 doi: 10.2307/2348376
    [20] H. Ren, Q. Gong, X. Hu, Estimation of entropy for generalized Rayleigh distribution under progressively type-Ⅱ censored samples, Axioms, 12 (2023), 776. https://doi.org/10.3390/axioms12080776 doi: 10.3390/axioms12080776
    [21] G. Lin, A. Lin, Y. Mi, Modified hierarchical time-delayed distribution entropy: An effective method for signal complexity measurement, Nonlinear Dynam., 113 (2025), 1191–1207. https://doi.org/10.1007/s11071-024-10297-4 doi: 10.1007/s11071-024-10297-4
    [22] M. Skorski, Towards more efficient Renyi entropy estimation, Entropy, 25 (2023), 185. https://doi.org/10.3390/e25020185 doi: 10.3390/e25020185
    [23] G. Singh, R. Khosa, M. K. Jain, T. Moramarco, V. P. Singh, Influence of the channel bed slope on Shannon, Tsallis, and Renyi entropy parameters, J. Hydroinform., 25 (2023), 2195–2209. https://doi.org/10.2166/hydro.2023.008 doi: 10.2166/hydro.2023.008
    [24] Q. Tran, J. Kukal, Renyi entropy based design of heavy tailed distribution for return of financial assets, Physica A, 637 (2024), 129531. https://doi.org/10.1016/j.physa.2024.129531 doi: 10.1016/j.physa.2024.129531
    [25] M. Mesfioui, M. Kayid, M. Shrahili, Renyi entropy of the residual lifetime of a reliability system at the system level, Axioms, 12 (2023), 320. https://doi.org/10.3390/axioms12040320 doi: 10.3390/axioms12040320
    [26] C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [27] I. Nikoufar, M. Fazlolahi, Some bounds for the generalized tsallis relative operator entropy, Mediterr. J. Math., 20 (2023), 115. https://doi.org/10.1007/s00009-023-02312-6 doi: 10.1007/s00009-023-02312-6
    [28] A. Ghosh, P. Chaudhuri, Generalized position and momentum Tsallis entropies, Int. J. Theor. Phys., 39 (2000), 2423–2438. https://doi.org/10.1023/A:1026432919521 doi: 10.1023/A:1026432919521
    [29] Y. Shi, Y. Wu, P. Shang, Research on weighted Havrda-Charvat's entropy in financial time series, Physica A, 572 (2021), 125914. https://doi.org/10.1016/j.physa.2021.125914 doi: 10.1016/j.physa.2021.125914
    [30] Z. Wang, P. Shang, Analysis of the dispersion Havrda–Charvat entropy plane in financial time series, Int. J. Bifurcat. Chaos, 32 (2022), 2250234. https://doi.org/10.1142/S0218127422502340 doi: 10.1142/S0218127422502340
    [31] T. Brochet, J. L. Lahorgue, S. Bougleux, M. Salaün, S. Ruan, Deep learning using Havrda-Charvat entropy for classification of pulmonary optical endomicroscopy, IRBM, 42 (2021), 400–406. https://doi.org/10.1016/j.irbm.2021.06.006 doi: 10.1016/j.irbm.2021.06.006
    [32] Y. Q. Wu, Y. L. Long, Line intercept histogram-based Arimoto entropy or Arimoto gray entropy for food image segmentation, Mod. Food. Sci. Tech., 32 (2016), 164–169. https://doi.org/10.13982/j.mfst.1673-9078.2016.1.026 doi: 10.13982/j.mfst.1673-9078.2016.1.026
    [33] N. Alotaibi, A. F. Hashem, I. Elbatal, S. A. Alyami, A. S. A. Moisheer, M. Elgarhy, Inference for a Kavya-Manoharan inverse length biased exponential distribution under progressive-stress model based on progressive Type-Ⅱ censoring, Entropy, 24 (2022), 1033. https://doi.org/10.3390/e24081033 doi: 10.3390/e24081033
    [34] B. Li, R. Li, Z. Liu, C. Li, Z. Wang, An objective non-eeference metric based on Arimoto entropy for assessing the quality of fused images, Entropy, 21 (2019), 879. https://doi.org/10.3390/e21090879 doi: 10.3390/e21090879
    [35] H. Zhang, J. L. Fan, Two-dimensional Arimoto entropy linear-type threshold segmentation method, Acta Photonica Sinic., 42 (2013), 234–240. https://doi.org/10.3788/gzxb20134202.0234 doi: 10.3788/gzxb20134202.0234
    [36] R. Maya, M. Irshad, Kernel estimation of Mathai-Haubold entropy and residual Mathai-Haubold entropy functions under α-Mixing dependence condition, Am. J. Math. Manag. Sci., 41 (2022), 148–159. https://doi.org/10.1080/01966324.2021.1935366 doi: 10.1080/01966324.2021.1935366
    [37] I. M. Almanjahie, J. G. Dar, A. I. A. Omari, A. Mir, Quantile version of Mathai-Haubold entropy of order statistics, Cmes-Comp. Model. Eng., 128 (2021), 907–925. https://doi.org/10.32604/cmes.2021.014896 doi: 10.32604/cmes.2021.014896
    [38] R. M. Alotaibi, H. R. Rezk, A. Elshahhat, Analysis of generalized type-Ⅱ progressively hybrid Lindley-exponential data and its modeling in physics, engineering, and management, Aip. Adv., 14 (2024), 045213. https://doi.org/10.1063/5.0197082 doi: 10.1063/5.0197082
    [39] M. Nagy, Expected Bayesian estimation based on generalized progressive hybrid censored data for Burr-Ⅻ distribution with applications, Aip. Adv., 14 (2024), 015357. https://doi.org/10.1063/5.0184910 doi: 10.1063/5.0184910
    [40] D. V. Lindley, Approximate Bayesian method, Trab. Estad. Invest. Oper., 31 (1980), 223–237. https://doi.org/10.1007/BF02888353 doi: 10.1007/BF02888353
    [41] A. R. E. Saeed, E. M. Almetwally, On algorithms and approximations for progressively type‐Ⅰ censoring schemes, Stat. Anal. Data Min., 17 (2024), e11717. https://doi.org/10.1002/sam.11717 doi: 10.1002/sam.11717
    [42] E. S. A. E. Sherpieny, E. M. Almetwally, H. Z. Muhammed, Bayesian and non-Bayesian estimation for the parameter of Bivariate generalized Rayleigh distribution based on Clayton Copula under progressive type-Ⅱ censoring with random removal, Sankhya A., 85 (2023), 1205–1242. https://doi.org/10.1007/s13171-021-00254-3 doi: 10.1007/s13171-021-00254-3
    [43] D. Kundu, Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring, Technometrics, 50 (2008), 144–154. https://doi.org/10.1198/004017008000000217 doi: 10.1198/004017008000000217
    [44] B. Efron, Logistic regression, survival analysis, and the Kaplan-Meier curve, J. Am. Stat. Assoc., 83 (1988), 414–425. https://doi.org/10.1080/01621459.1988.10478612 doi: 10.1080/01621459.1988.10478612
    [45] G. S. Mudholkar, D. K. Srivastava, G. D. Kollia, A Generalization of the Weibull distribution with application to the analysis of survival data, J. Am. Stat. Assoc., 91 (1996), 1575–1583. https://doi.org/10.1080/ 01621459.1996.10476725 doi: 10.1080/01621459.1996.10476725
    [46] J. Bengalath, B. Punathumparambath, A novel extension of inverse exponential distributions: A heavy-tailed model with upside down bathtub shaped hazard rate, Reliab. Theory Appl., 18 (2023), 112–127. https://doi.org/10.24412/1932-2321-2023-476-112-127 doi: 10.24412/1932-2321-2023-476-112-127
    [47] K. Jain, N. Singla, S. Sharma, The Generalized inverse generalized weibull distribution and its properties, J. Probab., 2024. https://doi.org/10.1155/2014/736101
    [48] A. Elshahhat, E. M. Almetwally, S. Dey, H. S. Mohammed, Analysis of WE parameters of life using adaptive-progressively type-Ⅱ hybrid censored mechanical equipment data, Axioms, 12 (2023), 690. https://doi.org/10.3390/axioms12070690 doi: 10.3390/axioms12070690
    [49] E. A. Eldessouky, O. H. Hassan, B. Aloraini, I. Elbatal. Modeling to medical and economic data using: The transmuted power unit inverse Lindley distribution, Alex. Eng. J., 113 (2025), 633–647. https://doi.org/10.1016/j.aej.2024.11.008 doi: 10.1016/j.aej.2024.11.008
    [50] O. Alzeley, E. M. Almetwally, A. M. Gemeay, H. M. Alshanbari, E. H. Hafez, M. H. A. Moussa, Statistical inference under censored data for the new exponential-X Fréchet distribution: Simulation and application to Leukemia data, Comput. Intel. Neurosc., 2021 (2021), 2167670. https://doi.org/10.1155/2021/2167670 doi: 10.1155/2021/2167670
    [51] W. S. A. E. Azm, E. M. Almetwally, S. N. A. Aziz, A. A. H. E. Bagoury, R. Alharbi, O. E. A. Kasem, A new transmuted generalized Lomax distribution: Properties and applications to COVID-19 data, Comput. Intel. Neurosc., 2021 (2021), 5918511. https://doi.org/10.1155/2021/5918511 doi: 10.1155/2021/5918511
    [52] S. A. Alyami, I. Elbatal, N. Alotaibi, E. M. Almetwally, H. M. Okasha, M. Elgarhy, Topp–Leone modified Weibull model: Theory and applications to medical and engineering Data, Appl. Sci., 12 (2022), 10431. https://doi.org/10.3390/app122010431 doi: 10.3390/app122010431
    [53] A. Elshahhat, H. S. Mohammed, Survival analysis and applications of weighted NH parameters using progressively censored data, Symmetry, 15 (2023), 735. https://doi.org/10.3390/sym 15030735 doi: 10.3390/sym15030735
    [54] M. Eltehiwy, Extended exponentiated inverse Lindley distribution: Model, properties and applications, J. Indian Soc. Prob. St., 20 (2019), 281–300. https://doi.org/10.1007/s41096-019-00068-5 doi: 10.1007/s41096-019-00068-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(652) PDF downloads(37) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog