This article investigates two mathematical models describing the transmission dynamics of infectious diseases, with a particular focus on the impact of vaccination. Both models partition the total population into five compartments: susceptible individuals $ \mathbb{S}(t) $, exposed individuals $ \mathbb{E}(t) $, asymptomatic infected individuals $ \mathbb{I}_{A}(t) $, symptomatic infected individuals $ \mathbb{I}_{S}(t) $, and vaccinated individuals $ \mathbb{V}(t) $. The first model incorporates discrete time delays to explore their effect on the stability of disease-free and endemic equilibrium. The second model introduces a control intervention to assess its influence on disease mitigation. For both frameworks, we establish the non-negativity and boundedness of solutions, ensuring biological feasibility. We then derive the basic reproduction number $ \mathfrak{R}_{0} $ to characterize the local and global stability of the equilibrium. Global asymptotic stability is proven by constructing appropriate Lyapunov functions. Finally, numerical simulations are presented to illustrate and support the theoretical results, emphasizing the influence of time delays and vaccination strategies on the long-term behavior of the models.
Citation: Abeer Alshareef, Fawziah M. Alotaibi. Global stability of $ \mathbb{S\, E\, I}_{A}\mathbb{I}_{S}\mathbb{V} $ epidemic models with two discrete time delays and control action[J]. AIMS Mathematics, 2025, 10(8): 17705-17739. doi: 10.3934/math.2025791
This article investigates two mathematical models describing the transmission dynamics of infectious diseases, with a particular focus on the impact of vaccination. Both models partition the total population into five compartments: susceptible individuals $ \mathbb{S}(t) $, exposed individuals $ \mathbb{E}(t) $, asymptomatic infected individuals $ \mathbb{I}_{A}(t) $, symptomatic infected individuals $ \mathbb{I}_{S}(t) $, and vaccinated individuals $ \mathbb{V}(t) $. The first model incorporates discrete time delays to explore their effect on the stability of disease-free and endemic equilibrium. The second model introduces a control intervention to assess its influence on disease mitigation. For both frameworks, we establish the non-negativity and boundedness of solutions, ensuring biological feasibility. We then derive the basic reproduction number $ \mathfrak{R}_{0} $ to characterize the local and global stability of the equilibrium. Global asymptotic stability is proven by constructing appropriate Lyapunov functions. Finally, numerical simulations are presented to illustrate and support the theoretical results, emphasizing the influence of time delays and vaccination strategies on the long-term behavior of the models.
| [1] |
J. Djordjevic, C. J. Silva, D. F. M. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168–175. https://doi.org/10.1016/j.aml.2018.05.005 doi: 10.1016/j.aml.2018.05.005
|
| [2] |
A. Ullah, T. Abdeljawad, S. Ahmad, K. Shah, Study of a fractional-order epidemic model of childhood diseases, J. Funct. Space., 2020 (2020), 5895310. https://doi.org/10.1155/2020/5895310 doi: 10.1155/2020/5895310
|
| [3] |
K. Dietz, J. A. Heesterbeek, Daniel Bernoulli's epidemiological model revisited, Math. Biosci., 108 (2002), 1–21. https://doi.org/10.1016/S0025-5564(02)00122-0 doi: 10.1016/S0025-5564(02)00122-0
|
| [4] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
|
| [5] | A. Kornai, Mathematical linguistics, London: Springer, 2008. https://doi.org/10.1007/978-1-84628-986-6 |
| [6] |
S. S. Musa, S. Zhao, I. Abdulrashid, S. Qureshi, A. Colubri, D. He, Evaluating the spike in the symptomatic proportion of SARS-CoV-2 in China in 2022 with variolation effects: a modeling analysis, Infect. Dis. Model., 9 (2024), 601–617. https://doi.org/10.1016/j.idm.2024.02.011 doi: 10.1016/j.idm.2024.02.011
|
| [7] |
M. D. Johansyah, A. Sambas, S. Qureshi, S. Zheng, T. M. Abed-Elhameed, S. Vaidyanathan, et al., Investigation of the hyperchaos and control in the fractional order financial system with profit margin, Partial Differential Equations in Applied Mathematics, 9 (2024), 100612. https://doi.org/10.1016/j.padiff.2023.100612 doi: 10.1016/j.padiff.2023.100612
|
| [8] |
P. A. Naik, M. Amer, R. Ahmed, S. Qureshi, Z. Huang, Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect, Mathematical Biosciences and Engineering, 21 (2024), 4554–4586. https://doi.org/10.3934/mbe.2024201 doi: 10.3934/mbe.2024201
|
| [9] |
A. Tassaddiq, S. Qureshi, A. Soomro, O. A. Arqub, M. Senol, Comparative analysis of classical and Caputo models for COVID-19 spread: vaccination and stability assessment, Fixed Point Theory Algorithms Sci. Eng., 2024 (2024), 2. https://doi.org/10.1186/s13663-024-00760-7 doi: 10.1186/s13663-024-00760-7
|
| [10] |
M. Awadalla, J. Alahmadi, K. R. Cheneke, S. Qureshi, Fractional optimal control model and bifurcation analysis of human syncytial respiratory virus transmission dynamics, Fractal Fract., 8 (2024), 44. https://doi.org/10.3390/fractalfract8010044 doi: 10.3390/fractalfract8010044
|
| [11] |
C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, P.-R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges, Int. J. Antimicrob. Ag., 55 (2020), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924 doi: 10.1016/j.ijantimicag.2020.105924
|
| [12] |
I. Rahimi, F. Chen, A. H. Gandomi, A review on COVID-19 forecasting models, Neural Comput. Appl., 35 (2023), 23671–23681. https://doi.org/10.1007/s00521-020-05626-8 doi: 10.1007/s00521-020-05626-8
|
| [13] |
S. Hussain, E. N. Madi, H. Khan, S. Etemad, S. Rezapour, T. Sitthiwirattham, Investigation of the stochastic modeling of COVID-19 with environmental noise from the analytical and numerical point of view, Mathematics, 9 (2021), 3122. https://doi.org/10.3390/math9233122 doi: 10.3390/math9233122
|
| [14] |
L. Liu, S. Chen, M. Small, J. M. Moore, K. Shang, Global stability and optimal control of epidemics in heterogeneously structured populations exhibiting adaptive behavior, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107500, https://doi.org/10.1016/j.cnsns.2023.107500 doi: 10.1016/j.cnsns.2023.107500
|
| [15] |
S. Pathak, V. R. Kota, An influential study of a time-delayed epidemic model incorporating vaccination and treatment interventions, Adv. Cont. Discr. Mod., 2025 (2025), 57. https://doi.org/10.1186/s13662-025-03920-0 doi: 10.1186/s13662-025-03920-0
|
| [16] |
A. Alshareef, Quantitative analysis of a fractional order of the $S EI_{c} I_{\eta}VR$ epidemic model with vaccination strategy, AIMS Math., 9 (2024), 6878–6903. https://doi.org/10.3934/math.2024335 doi: 10.3934/math.2024335
|
| [17] | J. K. Hale, S. M. V. Lunel, Introduction To functional differential equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4612-4342-7 |
| [18] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48, https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6
|
| [19] | J. K. Hale, Retarded functional differential equations: basic theory, In: Theory of functional differential equations, New York: Springer, 1977, 36–56. https://doi.org/10.1007/978-1-4612-9892-2_3 |