Research article

Certain novel local fractional half-discrete Hilbert-type inequalities with nonhomogeneous kernels

  • Received: 20 February 2025 Revised: 09 July 2025 Accepted: 17 July 2025 Published: 05 August 2025
  • MSC : 26A33, 26D10, 31A10

  • By employing weight coefficient methods and parameterization techniques, this paper investigates certain novel local fractional half-discrete Hilbert-type inequalities with nonhomogeneous kernels on fractal sets. Furthermore, both the canonical equivalences and its degenerate forms are presented as applications. The main results of this paper can be seen as generalizations and extensions of classical half-discrete Hilbert-type inequalities to the realm of local fractional calculus.

    Citation: Xiaohong Zuo, Predrag Vuković, Wengui Yang. Certain novel local fractional half-discrete Hilbert-type inequalities with nonhomogeneous kernels[J]. AIMS Mathematics, 2025, 10(8): 17642-17656. doi: 10.3934/math.2025788

    Related Papers:

  • By employing weight coefficient methods and parameterization techniques, this paper investigates certain novel local fractional half-discrete Hilbert-type inequalities with nonhomogeneous kernels on fractal sets. Furthermore, both the canonical equivalences and its degenerate forms are presented as applications. The main results of this paper can be seen as generalizations and extensions of classical half-discrete Hilbert-type inequalities to the realm of local fractional calculus.



    加载中


    [1] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge: Cambridge University Press, 1967.
    [2] M. Krnić, J. Pečarić, I. Perić, P. Vuković, Recent advances in Hilbert-type inequalities, Zagreb: Element, 2012.
    [3] T. Batbold, L. E. Azar, A new form of Hilbert integral inequality, J. Math. Inequal., 12 (2018), 379–390. https://doi.org/10.7153/jmi-2018-12-28 doi: 10.7153/jmi-2018-12-28
    [4] L. E. Azar, The connection between Hilbert and Hardy inequalities, J. Inequal. Appl., 2013 (2023), 452. https://doi.org/10.1186/1029-242X-2013-452 doi: 10.1186/1029-242X-2013-452
    [5] P. Vuković, W. G. Yang, A unified approach to new discrete local fractional Hilbert-type inequalities, Filomat, 39 (2025), 3191–3200.
    [6] P. Vuković, W. G. Yang, Certain new local fractional Hilbert-Pachpatte-type inequalities, Malaya Journal of Matematik, 13 (2025), 99–108. https://doi.org/10.26637/mjm1302/001 doi: 10.26637/mjm1302/001
    [7] B. C. Yang, Hilbert-type integral inequalities, Sharjah: Bentham Science Publishers, 2009. https://doi.org/10.2174/97816080505501090101
    [8] B. C. Yang, Discrete Hilbert-type inequalities, Sharjah: Bentham Science Publishers, 2011. https://doi.org/10.2174/97816080524241110101
    [9] M. Krnić, J. Pečarić, Hilbert's inequalities and their reverses, Publ. Math. Debrecen, 67 (2005), 315–331. https://doi.org/10.5486/PMD.2005.3100 doi: 10.5486/PMD.2005.3100
    [10] M. Krnić, J. Pečarić, Extension of Hilbert's inequality, J. Math. Anal. Appl., 324 (2006), 150–160. https://doi.org/10.1016/j.jmaa.2005.11.069 doi: 10.1016/j.jmaa.2005.11.069
    [11] M. T. Rassias, B. C. Yang, A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function, J. Math. Anal. Appl., 428 (2015), 1286–1308. https://doi.org/10.1016/j.jmaa.2015.04.003 doi: 10.1016/j.jmaa.2015.04.003
    [12] M. T. Rassias, B. C. Yang, On a Hilbert-type integral inequality in the whole plane related to the extended Riemann Zeta function, Complex Anal. Oper. Theory, 13 (2019), 1765–1782. https://doi.org/10.1007/s11785-018-0830-5 doi: 10.1007/s11785-018-0830-5
    [13] M. T. Rassias, B. C. Yang, On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-Zeta function, J. Math. Inequal., 13 (2019), 315–334. https://doi.org/10.7153/jmi-2019-13-23 doi: 10.7153/jmi-2019-13-23
    [14] M. H. You, Y. Guan, On a Hilbert-type integral inequality with non-homogeneous kernel of mixed hyperbolic functions, J. Math. Inequal., 13 (2019), 1197–1208. https://doi.org/10.7153/jmi-2019-13-85 doi: 10.7153/jmi-2019-13-85
    [15] M. H. You, F. Dong, Z. H. He, A Hilbert-type inequality in the whole plane with the constant factor related to some special constants, J. Math. Inequal., 16 (2022), 35–50. https://doi.org/10.7153/jmi-2022-16-03 doi: 10.7153/jmi-2022-16-03
    [16] Q. Chen, Y. Hong, B. C. Yang, A more accurate extended Hardy–Hilbert's inequality with parameters, J. Math. Inequal., 16 (2022), 1075–1089. https://doi.org/10.7153/jmi-2022-16-72 doi: 10.7153/jmi-2022-16-72
    [17] V. Adiyasuren, T. Batbold, Some new inequalities similar to Hilbert-type integral inequality with a homogeneous kernel, J. Math. Inequal., 6 (2012), 183–193. https://doi.org/10.7153/jmi-06-19 doi: 10.7153/jmi-06-19
    [18] V. Adiyasuren, T. Batbold, M. Krnić, On several new Hilbert-type inequalities involving means operators, Acta Math. Sin.-English Ser., 29 (2013), 1493–1514. https://doi.org/10.1007/s10114-013-2545-x doi: 10.1007/s10114-013-2545-x
    [19] B. C. Yang, A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables, Mediterr. J. Math., 10 (2013), 677–692. https://doi.org/10.1007/s00009-012-0213-5 doi: 10.1007/s00009-012-0213-5
    [20] D. M. Xin, B. C. Yang, A half-discrete Hilbert's inequality with the non-monotone kernel and a best constant factor, J. Inequal. Appl., 2012 (2012), 184. https://doi.org/10.1186/1029-242X-2012-184 doi: 10.1186/1029-242X-2012-184
    [21] B. C. Yang, M. Krnić, A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0, J. Math. Inequal., 6 (2012), 401–417. https://doi.org/10.7153/jmi-06-38 doi: 10.7153/jmi-06-38
    [22] M. T. Rassias, B. C. Yang, On half-discrete Hilbert's inequality, Appl. Math. Comput., 220 (2013), 75–93. https://doi.org/10.1016/j.amc.2013.06.010 doi: 10.1016/j.amc.2013.06.010
    [23] M. T. Rassias, B. C. Yang, A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function, Appl. Math. Comput., 225 (2013), 263–277. https://doi.org/10.1016/j.amc.2013.09.040 doi: 10.1016/j.amc.2013.09.040
    [24] M. H. You, On a half-discrete Hilbert-type inequality related to hyperbolic functions, J. Inequal. Appl., 2021 (2021), 153. https://doi.org/10.1186/s13660-021-02688-7 doi: 10.1186/s13660-021-02688-7
    [25] M. H. You, A half-discrete Hilbert-type inequality in the whole plane with the constant factor related to a cotangent function, J. Inequal. Appl., 2023 (2023), 43. https://doi.org/10.1186/s13660-023-02951-z doi: 10.1186/s13660-023-02951-z
    [26] M. H. You, A class of half–discrete Hilbert–type inequalities in the whole plane involving some classical kernels, J. Math. Inequal., 17 (2023), 1387–1410. https://doi.org/10.7153/jmi-2023-17-91 doi: 10.7153/jmi-2023-17-91
    [27] M. H. You, On a class of half-discrete Hilbert-type inequalities in the whole plane involving some classical special constants, Ital. J. Pure Appl. Mat., 51 (2024), 364–385. https://ijpam.uniud.it/online_issue/202451/26
    [28] Y. Hong, Y. Y. Zhong, B. C. Yang, On a more accurate half-discrete multidimensional Hilbert-type inequality involving one derivative function of $m$-order, J. Inequal. Appl., 2023 (2023), 74. https://doi.org/10.1186/s13660-023-02980-8 doi: 10.1186/s13660-023-02980-8
    [29] A. Z. Wang, B. C. Yang, Q. Chen, Equivalent properties of a reverse half-discrete Hilbert's inequality, J. Inequal. Appl., 2019 (2019), 279. https://doi.org/10.1186/s13660-019-2236-y doi: 10.1186/s13660-019-2236-y
    [30] J. Q. Liao, B. C. Yang, A new reverse half-discrete Hilbert-type inequality with one partial sum involving one derivative function of higher order, Open Math., 21 (2023), 20230139. https://doi.org/10.1515/math-2023-0139 doi: 10.1515/math-2023-0139
    [31] L. Peng, R. A. Rahim, B. C. Yang, A new reverse half-discrete Mulholland-type inequality with a nonhomogeneous kernel, J. Inequal. Appl., 2023 (2023), 114. https://doi.org/10.1186/s13660-023-03025-w doi: 10.1186/s13660-023-03025-w
    [32] V. Adiyasuren, T. Batbold, M. Krnić, Half-discrete Hilbert-type inequalities with mean operators, the best constants, and applications, Appl. Math. Comput., 231 (2014), 148–159. https://doi.org/10.1016/j.amc.2014.01.011 doi: 10.1016/j.amc.2014.01.011
    [33] M. Krnić, J. Pečarić, P. Vuković, A unified treatment of half-discrete Hilbert-type inequalities with a homogeneous kernel, Mediterr. J. Math., 10 (2013), 1697–1716. https://doi.org/10.1007/s00009-013-0265-1 doi: 10.1007/s00009-013-0265-1
    [34] X.-J. Yang, Local fractional functional analysis and its applications, Hong Kong: Asian Academic publisher, 2011.
    [35] X.-J. Yang, Advanced local fractional calculus and its applications, New York: World Science Publisher, 2012.
    [36] H. Budak, M. Z. Sarikaya, H. Yildirim, New inequalities for local fractional integrals, Iran. J. Sci. Technol. Trans. Sci., 41 (2017), 1039–1046. https://doi.org/10.1007/s40995-017-0315-9 doi: 10.1007/s40995-017-0315-9
    [37] Q. Liu, A Hilbert-type fractional integral inequality with the kernel of Mittag-Leffler function and its applications, Math. Inequal. Appl., 21 (2018), 729–737. https://doi.org/10.7153/mia-2018-21-52 doi: 10.7153/mia-2018-21-52
    [38] Y. D. Liu, Q. Liu, Generalization of Yang-Hardy-Hilbert's integral inequality on the fractal set $\mathbb{R}_+^\alpha$, Fractals, 30 (2022), 2250017. https://doi.org/10.1142/S0218348X22500177 doi: 10.1142/S0218348X22500177
    [39] D. Baleanu, M. Krnić, P. Vuković, A class of fractal Hilbert‐type inequalities obtained via Cantor‐type spherical coordinates, Math. Method. Appl. Sci., 44 (2021), 6195–6208. https://doi.org/10.1002/mma.7180 doi: 10.1002/mma.7180
    [40] T. Batbold, M. Krnić, P. Vuković, A unified approach to fractal Hilbert-type inequalities, J. Inequal. Appl., 2019 (2019), 117. https://doi.org/10.1186/s13660-019-2076-9 doi: 10.1186/s13660-019-2076-9
    [41] T. S. Du, X. M. Yuan, On the parameterized fractal integral inequalities and related applications, Chaos Soliton. Fract., 170 (2023), 113375. https://doi.org/10.1016/j.chaos.2023.113375 doi: 10.1016/j.chaos.2023.113375
    [42] S. I. Butt, A. Khan, New fractal-fractional parametric inequalities with applications, Chaos Soliton. Fract., 172 (2023), 113529. https://doi.org/10.1016/j.chaos.2023.113529 doi: 10.1016/j.chaos.2023.113529
    [43] M. A. Noor, K. I. Noor, S. Iftikhar, M. U. Awan, Fractal integral inequalities for harmonic convex functions, Appl. Math. Inform. Sci., 12 (2018), 831–839. https://doi.org/10.18576/amis/120418 doi: 10.18576/amis/120418
    [44] H. Ge-JiLe, S. Rashid, F. B. Farooq, S. Sultana, Some inequalities for a new class of convex functions with applications via local fractional integral, J. Funct. Space., 2021 (2021), 6663971. https://doi.org/10.1155/2021/6663971 doi: 10.1155/2021/6663971
    [45] Q. Liu, W. B. Sun, A Hilbert-type fractal integral inequality and its applications, J. Inequal. Appl., 2017 (2017), 83. https://doi.org/10.1186/s13660-017-1360-9 doi: 10.1186/s13660-017-1360-9
    [46] M. Krnić, P. Vuković, Multidimensional Hilbert-type inequalities obtained via local fractional calculus, Acta Appl. Math., 169 (2020), 667–680. https://doi.org/10.1007/s10440-020-00317-x doi: 10.1007/s10440-020-00317-x
    [47] Y. D. Liu, Q. Liu, A Hilbert-type local fractional integral inequality with the kernel of a hyperbolic cosecant function, Fractals, 32 (2024), 2440028. https://doi.org/10.1142/S0218348X24400280 doi: 10.1142/S0218348X24400280
    [48] H. X. Mo, X. Sui, D. Y. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal., 2014 (2014), 636751. https://doi.org/10.1155/2014/636751 doi: 10.1155/2014/636751
    [49] E. F. Beckenbach, R. Bellman, Inequalities, Berlin: Springer, 1961. https://doi.org/10.1007/978-3-642-64971-4
    [50] P. Vuković, W. G. Yang, Discrete local fractional Hilbert-type inequalities, Kragujev. J. Math., 49 (2025), 899–911. https://doi.org/10.46793/KgJMat2506.899V doi: 10.46793/KgJMat2506.899V
    [51] B. C. Yang, A mixed Hilbert-type inequality with a best constant factor, Int. J. Pure Appl. Math., 20 (2005), 319–328. http://www.ijpam.eu/contents/2005-20-3/5/5.pdf
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(487) PDF downloads(32) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog