Research article

Monophonic sets and rough directed topological spaces: Applications with some directed networks

  • Received: 22 May 2025 Revised: 19 July 2025 Accepted: 24 July 2025 Published: 05 August 2025
  • MSC : 05C99, 18F60, 05C20

  • By using the monophonic paths in the theory of directed graphs, this paper constructs a new topology, called the out mondirected topology, and characterizes the graphs that induce the indiscrete or discrete topology. We give and study some relations and properties such as the relationship between the isomorphic relation in directed graphs and the homeomorphic property in out mondirected topological spaces, compactness, $ \mathbb{D}_{\pm} $-connectedness, connectedness, and $ \mathbb{D}_{\pm} $-discrete properties. Finally, we apply our results of out mondirected topological spaces in the nervous system of the human body, such as in the messenger signal network, in diagrams of sensory neuron cells, and in models of two distinct nicotinic receptor types based on second messenger signal.

    Citation: Faten H. Damag, Amin Saif, Adem Kiliçman, Fozaiyah Alhubairah, Khaled M. Saad, Ekram E. Ali, Mouataz Billah Mesmouli. Monophonic sets and rough directed topological spaces: Applications with some directed networks[J]. AIMS Mathematics, 2025, 10(8): 17623-17641. doi: 10.3934/math.2025787

    Related Papers:

  • By using the monophonic paths in the theory of directed graphs, this paper constructs a new topology, called the out mondirected topology, and characterizes the graphs that induce the indiscrete or discrete topology. We give and study some relations and properties such as the relationship between the isomorphic relation in directed graphs and the homeomorphic property in out mondirected topological spaces, compactness, $ \mathbb{D}_{\pm} $-connectedness, connectedness, and $ \mathbb{D}_{\pm} $-discrete properties. Finally, we apply our results of out mondirected topological spaces in the nervous system of the human body, such as in the messenger signal network, in diagrams of sensory neuron cells, and in models of two distinct nicotinic receptor types based on second messenger signal.



    加载中


    [1] S. Nada, A. E. F. El Atik, M. Atef, New types of topological structures via graphs. Math. Method. Appl. Sci., 41 (2018), 5801–5810. https://doi.org/10.1002/mma.4726
    [2] A. S. Jafarian, A. Jafarzadeh, H. Khatibzadeh, An Alexandroff topology on graphs, B. Iran. Math. Soc., 39 (2013), 647–662.
    [3] A. Othman, M. A. Shamiri, A. Saif, S. Acharjee, T. Lamoudan, R. Ismail, Pathless topology in connection to the circulation of blood in the heart of human body, AIMS Math., 7 (2022), 18158–18172. https://doi.org/10.3934/math.2022999 doi: 10.3934/math.2022999
    [4] C. G. Nianga, S. Canoy, On topologies induced by graphs under some unary and binary operations, Eur. J. Pure Appl. Math., 12 (2019), 499–505. https://doi.org/10.29020/nybg.ejpam.v12i2.3421 doi: 10.29020/nybg.ejpam.v12i2.3421
    [5] C. G. Nianga, S. Canoy, On a finite topological space induced by Hop neighborhoods of a graph, Adv. Appl. Discret. Mat., 21 (2019), 79–89. https://doi.org/10.17654/DM021010079 doi: 10.17654/DM021010079
    [6] K. A. Abdu, A. Kilicman, Topologies on the edges set of directed graphs, J. Math. Comput. Sci., 12 (2018), 71–84. https://doi.org/10.12988/ijma.2018.814 doi: 10.12988/ijma.2018.814
    [7] H. K. Sari, A. Kopuzlu, On topological spaces generated by simple undirected graphs, AIMS Math., 5 (2020), 5541–5550. https://doi.org/10.3934/math.2020355 doi: 10.3934/math.2020355
    [8] H. O. Zomam, H. A. Othman, M. Dammak, Alexandroff spaces and graphic topology, Adv. Math. Sci. J., 10 (2021), 2653–2662. https://doi.org/10.37418/amsj.10.5.28 doi: 10.37418/amsj.10.5.28
    [9] R. A. Gdairi, A. A. E. Atik, M. K. E. Bably, Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data, AIMS Math., 8 (2023), 26945–26967. https://doi.org/10.3934/math.20231379 doi: 10.3934/math.20231379
    [10] H. Alzubaidi, L. D. R. Kočinac, H. A. Othman, On topologies on simple graphs and their applications in radar chart methods, Axioms, 14 (2025), 178. https://doi.org/10.3390/axioms14030178 doi: 10.3390/axioms14030178
    [11] F. H. Damag, A. Saif, A. Kiliçman, E. E. Ali, M. B. Mesmouli, On $m$-negative sets and out mondirected topologies in the human nervous system, Mathematics, 12 (2024), 3763. https://doi.org/10.3390/math12233763 doi: 10.3390/math12233763
    [12] E. G. Anabel, R. C. Sergio, On a topological space generated by Monophonic eccentric neighborhoods of a graph, Eur. J. Pure Appl. Math., 14 (2021), 695–705. https://doi.org/10.29020/nybg.ejpam.v14i3.3990 doi: 10.29020/nybg.ejpam.v14i3.3990
    [13] M. Atef, A. E. E. Atik, A. Nawar, Fuzzy topological structures via fuzzy graphs and their applications, Soft Comput., 25 (2021), 6013–6027. https://doi.org/10.1007/s00500-021-05594-8 doi: 10.1007/s00500-021-05594-8
    [14] A. Blake, G. Stapleton, P. Rodgers, J. Howse, The impact of topological and graphical choices on the perception of Euler diagrams, Inform. Sciences, 330 (2016), 455–482. https://doi.org/10.1016/j.ins.2015.05.020 doi: 10.1016/j.ins.2015.05.020
    [15] D. Deka, S. Talukdar, M. Chertkov, M. V. Salapaka, Graphical models in meshed distribution grids: Topology estimation, change detection and limitations, IEEE T. Smart Grid, 11 (2020), 4299–4310. https://doi.org/10.1109/TSG.2020.2978541 doi: 10.1109/TSG.2020.2978541
    [16] W. Ahmed, S. Zaman, S. Ashraf, Topological characterisation of three classes of complex networks and their graphical representation and analysis, J. Micromech. Mol. Phys., 9 (2024), 77–89. https://doi.org/10.1142/S2424913024500115 doi: 10.1142/S2424913024500115
    [17] S. T. Timmanaikar, S. Hayat, S. M. Hosamani, S. Banu, Structure–property modeling of coumarins and coumarin-related compounds in pharmacotherapy of cancer by employing graphical topological indices, Eur. Phys. J. E, 47 (2024), 31. https://doi.org/10.1140/epje/s10189-024-00427-6 doi: 10.1140/epje/s10189-024-00427-6
    [18] Z. Yan, D. Li, Decentralized federated learning on the edge: From the perspective of quantization and graphical topology, IEEE Internet Things, 11 (2024), 34172–34186. https://doi.org/10.1109/JIOT.2024.3400512 doi: 10.1109/JIOT.2024.3400512
    [19] A. Gamorez, S. Canoy, Topologies induced by neighborhoods of a graph under some binary operations, Eur. J. Pure Appl. Math., 12 (2019), 749–755. https://doi.org/10.29020/nybg.ejpam.v12i3.3464 doi: 10.29020/nybg.ejpam.v12i3.3464
    [20] M. Shokry, R. E. Aly, Topological properties on graph vs medical application in human heart, Int. J. Appl. Math., 15 (2013), 1103–1109.
    [21] Y. Y. Yao, On generalized rough set theory, In: Rough sets, fuzzy sets, data mining, and granular computing, Heidelberg, Berlin: Springer, 2003, 44–51.
    [22] R. A. Hosny, M. K. E. Bably, M. A. E. Gayar, Primal approximation spaces by $\kappa$-neighborhoods with applications, Eur. J. Pure Appl. Math., 18 (2025), 5827–5827. https://doi.org/10.29020/nybg.ejpam.v18i1.5827 doi: 10.29020/nybg.ejpam.v18i1.5827
    [23] A. E. E. Atik, A. Nawar, M. Atef, Rough approximation models via graphs based on neighborhood systems, Granular Comput., 6 (2021), 1025–1035. https://doi.org/10.1007/s41066-020-00245-z doi: 10.1007/s41066-020-00245-z
    [24] A. Guler, Different neighborhoods via ideals on graphs, J. Math., 2022 (2022), 11. https://doi.org/10.1155/2022/9925564 doi: 10.1155/2022/9925564
    [25] R. C. T. D. Silva, P. E. O. Gonçalves, L. D. L. Cisneros, Anatomical principles of the circulatory system, In: Vascular diseases for the non-specialist, Springer, Cham., 2017.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(542) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog