Research article

Nyström method for the system of multi-dimensional nonlinear Fredholm integral equations of the second kind by the variable transformation

  • Received: 07 April 2025 Revised: 29 June 2025 Accepted: 23 July 2025 Published: 01 August 2025
  • MSC : 45B05, 45G15, 45L05, 65R20

  • An efficient numerical scheme is developed to solve the system of multi-dimensional nonlinear Fredholm integral equations (MDNFIEs) of the second kind in terms of the variable transformation technique of Sidi type in conjunction with the trapezoidal quadrature rule. Using the product Nyström method, the considered integral system is discretized into a set of nonlinear algebraic equations. Additionally, a rigorous convergence analysis of the proposed method is provided, thus demonstrating that compared with the classical trapezoidal quadrature rule approach, this scheme achieves a significantly improved convergence rate. Furthermore, numerical examples are presented to validate the efficiency and accuracy of the described method.

    Citation: Yanying Ma, Zhenxing Hao, Hongyan Liu, Guodong Wang, Changqing Wang. Nyström method for the system of multi-dimensional nonlinear Fredholm integral equations of the second kind by the variable transformation[J]. AIMS Mathematics, 2025, 10(8): 17381-17402. doi: 10.3934/math.2025777

    Related Papers:

  • An efficient numerical scheme is developed to solve the system of multi-dimensional nonlinear Fredholm integral equations (MDNFIEs) of the second kind in terms of the variable transformation technique of Sidi type in conjunction with the trapezoidal quadrature rule. Using the product Nyström method, the considered integral system is discretized into a set of nonlinear algebraic equations. Additionally, a rigorous convergence analysis of the proposed method is provided, thus demonstrating that compared with the classical trapezoidal quadrature rule approach, this scheme achieves a significantly improved convergence rate. Furthermore, numerical examples are presented to validate the efficiency and accuracy of the described method.



    加载中


    [1] A. M. Lin′kov, Boundary integral equations in elasticity theory, Berlin: Springer Science & Business Media, 2013.
    [2] C. Constanda, The boundary integral equation method in plane elasticity, P. Am. Math. Soc., 123 (1995), 3385–3396.
    [3] G. Tripathi, K. Shukla, R. Pandey, An integral equation approach to heat and mass transfer problem in an infinite cylinder, Int. J. Heat. Mass. Tran., 16 (1973), 985–990. https://doi.org/10.1016/0017-9310(73)90037-9 doi: 10.1016/0017-9310(73)90037-9
    [4] M. Bonnet, Boundary integral equation methods for solids and fluids, Meccanica, 34 (1999), 301–302. https://doi.org/10.1023/A:1004795120236 doi: 10.1023/A:1004795120236
    [5] V. Dmitriev, N. Nesmeyanova, Integral equation method in three-dimensional problems of low-frequency electrodynamics, Comput. Math. Model., 3 (1992), 313–317. https://doi.org/10.1007/BF01133905 doi: 10.1007/BF01133905
    [6] T. Vaupel, V. Hansen, Electrodynamic analysis of combined microstrip and coplanar/slotine structures with 3-D components based on a surface/volume integral-equation approach, IEEE. T. Microw. Theory., 47 (1999), 1788–1800. https://doi.org/10.1109/22.788514 doi: 10.1109/22.788514
    [7] A. Kadem, D. Baleanu, Two-dimensional transport equation as Fredholm integral equation, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 530–535. https://doi.org/10.1016/j.cnsns.2011.01.027 doi: 10.1016/j.cnsns.2011.01.027
    [8] W. C. Chew, M. S. Tong, Integral equation methods for electromagnetic and elastic waves, Berlin: Morgan & Claypool Publishers, 2008.
    [9] K. Atkinson, W. Han, Numerical solution of Fredholm integral equations of the second kind, 473–549, Springer, 2009.
    [10] K. Maleknejad, A. Ostadi, Using sinc-collocation method for solving weakly singular Fredholm integral equations of the first kind, Appl. Anal., 96 (2017), 702–713. https://doi.org/10.1080/00036811.2016.1153629 doi: 10.1080/00036811.2016.1153629
    [11] I. Aziz, Siraj-ul-Islam, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239 (2013), 333–345, https://doi.org/10.1016/j.cam.2012.08.031 doi: 10.1016/j.cam.2012.08.031
    [12] S. Panda, S. Martha, A. Chakrabarti, A modified approach to numerical solution of Fredholm integral equations of the second kind, Appl. Math. Comput., 271 (2015), 102–112. https://doi.org/10.1016/j.amc.2015.08.111 doi: 10.1016/j.amc.2015.08.111
    [13] S. Karimi Jafabigloo, M. Dehghan, F. Takhtabnoos, A new iteration method for solving a class of Hammerstein type integral equations system, Comput. Methods Diffe., 3 (2015), 231–246.
    [14] A. Hayotov, S. Babaev, The numerical solution of a Fredholm integral equations of the second kind by the weighted optimal quadrature formula, Results Appl. Math., 24 (2024), 100508. https://doi.org/10.1016/j.rinam.2024.100508 doi: 10.1016/j.rinam.2024.100508
    [15] W. J. Xie, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind, Appl. Numer. Math., 59 (2009), 1709–1719. https://doi.org/10.1016/j.apnum.2009.01.009 doi: 10.1016/j.apnum.2009.01.009
    [16] S. Bazm, E. Babolian, Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using Gauss product quadrature rules, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 1215–1223. https://doi.org/10.1016/j.cnsns.2011.08.017 doi: 10.1016/j.cnsns.2011.08.017
    [17] P. Assari, H. Adibi, M. Dehghan, A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains, Numer. Algorithms, 67 (2014), 423–455. https://doi.org/10.1007/s11075-013-9800-1 doi: 10.1007/s11075-013-9800-1
    [18] H. Fatahi, J. Saberi-Nadjafi, E. Shivanian, A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis, J. Comput. Appl. Math., 294 (2016), 196–209. https://doi.org/10.1016/j.cam.2015.08.018 doi: 10.1016/j.cam.2015.08.018
    [19] M. Esmaeilbeigi, F. Mirzaee, D. Moazami, A meshfree method for solving multidimensional linear Fredholm integral equations on the hypercube domains, Appl. Math. Comput., 298 (2017), 236–246. https://doi.org/10.1016/j.amc.2016.11.020 doi: 10.1016/j.amc.2016.11.020
    [20] H. Liu, J. Huang, W. Zhang, Y. Ma, Meshfree approach for solving multi-dimensional systems of fredholm integral equations via barycentric lagrange interpolation, Appl. Math. Comput., 346 (2019), 295–304. https://doi.org/10.1016/j.amc.2018.10.024 doi: 10.1016/j.amc.2018.10.024
    [21] M. Heydari, Z. Avazzadeh, H. Navabpour, G. Loghmani, Numerical solution of Fredholm integral equations of the second kind by using integral mean value theorem ⅱ. High dimensional problems, Appl. Math. Model., 37 (2013), 432–442. https://doi.org/10.1016/j.apm.2012.03.011 doi: 10.1016/j.apm.2012.03.011
    [22] H. Mottaghi Golshan, Numerical solution of nonlinear m-dimensional Fredholm integral equations using iterative newton cotes rules, J. Comput. Appl. Math., 448 (2024), 115917. https://doi.org/10.1016/j.cam.2024.115917 doi: 10.1016/j.cam.2024.115917
    [23] M. A. Zaky, I. G. Ameen, N. A. Elkot, E. H. Doha, A unified spectral collocation method for nonlinear systems of multi-dimensional integral equations with convergence analysis, Appl. Numer. Math., 161 (2021), 27–45. https://doi.org/10.1016/j.apnum.2020.10.028 doi: 10.1016/j.apnum.2020.10.028
    [24] A. Sidi, A new variable transformation for numerical integration, in Numerical Integration IV. Springer, 1993,359–373.
    [25] P. Verlinden, D. Potts, J. Lyness, Error expansions for multidimensional trapezoidal rules with Sidi transformations, Numer. Algorithms, 16 (1997), 321–347. https://doi.org/10.1023/A:1019155601289 doi: 10.1023/A:1019155601289
    [26] E. Galperin, E. Kansa, A. Makroglou, S. Nelson, Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations, J. Comput. Appl. Math., 115 (2000), 193–211. https://doi.org/10.1016/S0377-0427(99)00297-6 doi: 10.1016/S0377-0427(99)00297-6
    [27] J. Huang, G. Zeng, X. He, Z. C. Li, Splitting extrapolation algorithm for first kind boundary integral equations with singularities by mechanical quadrature methods, Adv. Comput. Math., 36 (2012), 79–97. https://doi.org/10.1007/s10444-011-9181-8 doi: 10.1007/s10444-011-9181-8
    [28] X. Luo, J. Huang, High-accuracy quadrature methods for solving boundary integral equations of steady-state anisotropic heat conduction problems with Dirichlet conditions, Int. J. Comput. Math., 91 (2014), 1097–1121. https://doi.org/10.1080/00207160.2013.828050 doi: 10.1080/00207160.2013.828050
    [29] R. H. Moore, Approximations to nonlinear operator equations and Newton's method, Numer. Math., 12 (1968), 23–34. https://doi.org/10.1007/BF02170993 doi: 10.1007/BF02170993
    [30] R. Weiss, On the approximation of fixed points of nonlinear compact operators, SIAM J. Numer. Anal., 11 (1974), 550–553. https://doi.org/10.1137/0711046 doi: 10.1137/0711046
    [31] G. Han, J. Wang, Extrapolation of Nyström solution for two dimensional nonlinear Fredholm integral equations, J. Comput. Appl. Math., 134 (2001), 259–268. https://doi.org/10.1016/S0377-0427(00)00553-7 doi: 10.1016/S0377-0427(00)00553-7
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(728) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog