Research article Special Issues

Generalizations of Herz-Morrey spaces and boundedness of the Calderón-Zygmund operators

  • Received: 01 April 2025 Revised: 17 July 2025 Accepted: 25 July 2025 Published: 01 August 2025
  • MSC : 46E30, 47B38

  • In this paper, we use the grand variable Herz-Morrey spaces, and our main objective is to prove the boundedness of multilinear Calderón-Zygmund operators on the product of grand variable Herz-Morrey spaces. We first define the Lebesgue spaces with variable exponents and some basic lemmas including Hölder's inequality for Lebesgue spaces. To prove the boundedness of multilinear Calderón-Zygmund operators on grand variable Herz-Morrey spaces, we use the well known Hölder's inequality and Minkonwski's inequality. We split the summation of grand variable Herz-Morrey spaces to find the $ L^{p(\cdot)}(\mathbb{R}^n) $ estimate of the characteristic function under some conditions. After finding estimate of each term, we conclude that multilinear Calderón-Zygmund operators are bounded on grand variable Herz-Morrey spaces. Our results generalize some results on variable Herz spaces and grand variable Herz spaces.

    Citation: Ghada AlNemer, Ghada Ali Basendwah, Mehvish Sultan, Ioan-Lucian Popa. Generalizations of Herz-Morrey spaces and boundedness of the Calderón-Zygmund operators[J]. AIMS Mathematics, 2025, 10(8): 17403-17422. doi: 10.3934/math.2025778

    Related Papers:

  • In this paper, we use the grand variable Herz-Morrey spaces, and our main objective is to prove the boundedness of multilinear Calderón-Zygmund operators on the product of grand variable Herz-Morrey spaces. We first define the Lebesgue spaces with variable exponents and some basic lemmas including Hölder's inequality for Lebesgue spaces. To prove the boundedness of multilinear Calderón-Zygmund operators on grand variable Herz-Morrey spaces, we use the well known Hölder's inequality and Minkonwski's inequality. We split the summation of grand variable Herz-Morrey spaces to find the $ L^{p(\cdot)}(\mathbb{R}^n) $ estimate of the characteristic function under some conditions. After finding estimate of each term, we conclude that multilinear Calderón-Zygmund operators are bounded on grand variable Herz-Morrey spaces. Our results generalize some results on variable Herz spaces and grand variable Herz spaces.



    加载中


    [1] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, foundations and harmonic analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Heidelberg, 2013. https://doi.org/10.1007/978-3-0348-0548-3
    [2] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36, (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
    [3] M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253.
    [4] Y. Lu, Y. P. Zhu, Boundedness of multilinear Calderón–Zygmund singular operators on Morrey-Herz spaces with variable exponents, Acta Math. Sin., 30 (2014), 1180–1194. https://doi.org/10.1007/s10114-014-3410-2 doi: 10.1007/s10114-014-3410-2
    [5] A. Abdalmonem, A. Omer, S. P. Tao, Boundedness of Littlewood-Paley operators with variable kernel on the weighted Herz-Morrey spaces with variable exponents, Surv. Math. Appl., 15 (2020), 295–313.
    [6] B. Sultan, A. Hussain, M. Sultan, Chracterization of generalized Campanato spaces with variable exponents via fractional integrals, J. Pseudo-Differ. Oper. Appl., 16 (2025). https://doi.org/10.1007/s11868-024-00651-w
    [7] M. Sultan, B. Sultan, R. E. Castillo, Lorentz Herz-Morrey spaces with applications, J. Pseudo-Differ. Oper. Appl., 16 (2025). https://doi.org/10.1007/s11868-025-00697-4
    [8] G. AlNemer, G. A Basendwah, B. Sultan, I. L. Popa, Some new Sobolev-type theorems for the rough Riesz potential operator on grand variable Herz spaces, Mathematics, 13 (2025), 1873. https://doi.org/10.3390/math13111873 doi: 10.3390/math13111873
    [9] B. Sultan, A. Hussain, M. Sultan, Anisotropic Musielak–Orlicz–Herz spaces and applications, Vietnam J. Math., 2025.
    [10] M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Ineq. App., 2016, 1–15. https://doi.org/10.1155/2016/2438157
    [11] M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponents, J. Math. Inequal., 11 (2017), 799–816.
    [12] A. Abdalmonem, A. Scapellato, Fractional operators with homogeneous kernels in weighted Herz spaces with variable exponent, Appl. Anal., 2020. https://doi.org/10.1080/00036811.2020.1789602
    [13] B. Sultan, M. Sultan, Boundedness of commutators of rough Hardy operators on grand variable Herz spaces, Forum Math., 36 (2024), 717–733. https://doi.org/10.1515/forum-2023-0152 doi: 10.1515/forum-2023-0152
    [14] B. Sultan, M. Sultan, I. Khan, On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces, Commun. Nonlinear Sci. Numer. Simul., 126 (2023). https://doi.org/10.1016/j.cnsns.2023.107464
    [15] B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
    [16] B. Sultan, F. M. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Frac. Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
    [17] M. Sultan, B. Sultan, A. Khan, T. Abdeljawad, Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces, AIMS Math., 8 (2023). https://doi.org/10.3934/math.20231139
    [18] B. Sultan, M. Sultan, Boundedness of higher order commutators of Hardy operators on grand Herz-Morrey spaces, Bull. Sci. Math., 190 (2024), 103373. https://doi.org/10.1016/j.bulsci.2023.103373 doi: 10.1016/j.bulsci.2023.103373
    [19] M. Sultan, B. Sultan, A. Hussain, Grand Herz–Morrey Spaces with variable exponent, Math. Notes., 114 (2023), 957–977. https://doi.org/10.1134/S0001434623110305 doi: 10.1134/S0001434623110305
    [20] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic, 2010, 1007–1186.
    [21] M. Sultan, B. Sultan, R. E. Castillo, Weighted composition operator on Gamma spaces with variable exponent, J. Pseudo-Differ. Oper. Appl., 15 (2024). https://doi.org/10.1007/s11868-024-00619-w
    [22] M. Sultan, B. Sultan, A note on the boundedness of higher order commutators on fractional integrals in grand variable Herz-Morrey spaces, Kragujev. J. Math., 50 (2026), 1063–1080.
    [23] B. Sultan, M. Sultan, A. Khan, T. Abdeljawad, Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, J. Inequal. Appl., 2024 (2024), 93. https://doi.org/10.1186/s13660-024-03169-3 doi: 10.1186/s13660-024-03169-3
    [24] B. Sultan, M. Sultan, Q. Q, Zhang, N. Mlaiki, Boundedness of Hardy operators on grand variable weighted Herz spaces, AIMS Math., 8 (2023), 24515–24527. https://doi.org/10.3934/math.20231250 doi: 10.3934/math.20231250
    [25] B. Sultan, M. Sultan, A. Hussain, Boundedness of the Bochner–Riesz operators on the weighted Herz–Morrey type Hardy spaces, Complex Anal. Oper. Theory., 19 (2025). https://doi.org/10.1007/s11785-025-01671-0
    [26] M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki. Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653 doi: 10.3934/math.2023653
    [27] B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. https://doi.org/10.3390/axioms11110583 doi: 10.3390/axioms11110583
    [28] B. Sultan, M. Sultan, Sobolev-type theorem for commutators of Hardy operators in grand Herz spaces, Ukr. Math. J., 76 (2024), 1196–1213. https://doi.org/10.1007/s11253-024-02381-0 doi: 10.1007/s11253-024-02381-0
    [29] S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
    [30] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Vol. 1: Variable Exponent Lebesgue and Amalgam Spaces, Oper. Theory Adv. Appl., 248, Birkhuser/Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-21018-6
    [31] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Vol. 2: Variable Exponent Hölder, Morrey-Campanato and Grand Spaces, Theory Adv. Appl., 249, Birkhuser/Springer, Cham, 2016.
    [32] X. X. Tao, X. Yu, H. Zhang, Multilinear Calderón-Zygmund operators on variable exponent Morrey spaces over domains, Appl. Math.-J. Chinese Univ., 26 (2011), 187–197. https://doi.org/10.1007/s11766-011-2704-8 doi: 10.1007/s11766-011-2704-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(489) PDF downloads(47) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog