Research article Special Issues

Inclusion of Bessel functions in a subclass of spiral functions

  • Received: 05 May 2025 Revised: 19 July 2025 Accepted: 21 July 2025 Published: 01 August 2025
  • MSC : 30C45, 30C80, 40G05

  • In this article, we derived conditions on the order $ \nu $ of the classical Bessel functions $ J_{\nu} $ that guarantee the inclusion of three distinct normalized forms of $ J_{\nu} $ in a subclass of $ \alpha $-spirallike functions. The primary goal was to determine the subintervals within $ (-\frac{\pi}{2}, \frac{\pi}{2}) $ where these inclusion conditions are satisfied. A key component in establishing our results was the upper bound of the ratio $ J_{\nu+1}(1)/J_{\nu}(1) $. The theoretical findings were validated through numerical experiments and accompanying graphical demonstrations.

    Citation: Saiful Rahman Mondal, Ahlam Almulhim. Inclusion of Bessel functions in a subclass of spiral functions[J]. AIMS Mathematics, 2025, 10(8): 17362-17380. doi: 10.3934/math.2025776

    Related Papers:

  • In this article, we derived conditions on the order $ \nu $ of the classical Bessel functions $ J_{\nu} $ that guarantee the inclusion of three distinct normalized forms of $ J_{\nu} $ in a subclass of $ \alpha $-spirallike functions. The primary goal was to determine the subintervals within $ (-\frac{\pi}{2}, \frac{\pi}{2}) $ where these inclusion conditions are satisfied. A key component in establishing our results was the upper bound of the ratio $ J_{\nu+1}(1)/J_{\nu}(1) $. The theoretical findings were validated through numerical experiments and accompanying graphical demonstrations.



    加载中


    [1] P. L. Duren, Univalent functions, Vol. 259, New York: Springer-Verlag, 1983.
    [2] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189–196.
    [3] R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci., 4 (2005), 561–570. https://doi.org/10.1155/IJMMS.2005.561 doi: 10.1155/IJMMS.2005.561
    [4] A. W. Goodman, Univalent functions, Vol. Ⅰ, Mariner Publishing Co., Inc., 1983.
    [5] Y. C. Kim, T. Sugawa, Correspondence between spirallike functions and starlike functions, Math. Nachr., 285 (2012), 322–331. https://doi.org/10.1002/mana.201010020 doi: 10.1002/mana.201010020
    [6] R. J. Libera, Univalent $\alpha $-spiral functions, Can. J. Math., 19 (1967), 449–456. https://doi.org/10.4153/CJM-1967-038-0 doi: 10.4153/CJM-1967-038-0
    [7] V. Ravichandran, C. Selvaraj, R. Rajagopal, On uniformly convex spiral functions and uniformly spirallike functions, Soochow J. Math., 29 (2003), 393–405.
    [8] N. Alabkary, S. R. Mondal, On spirallikeness of entire functions, Mathematics, 13 (2025), 1566. https://doi.org/10.3390/math13101566 doi: 10.3390/math13101566
    [9] G. N. Watson, A treatise on the theory of Bessel functions, 2 Eds., Cambridge University Press, 1944.
    [10] D. K. Ross, Inequalities for special functions, SIAM Rev., 15 (1973), 665–670.
    [11] E. K. Ifantis, P. D. Siafarikas, Inequalities involving Bessel and modified Bessel functions, J. Math. Anal. Appl., 147 (1990), 214–227. https://doi.org/10.1016/0022-247X(90)90394-U doi: 10.1016/0022-247X(90)90394-U
    [12] R. K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc., 11 (1960), 278–283. https://doi.org/10.2307/2032969 doi: 10.2307/2032969
    [13] R. K. Brown, Univalent solutions of $W^{\prime\prime}+pW = 0$, Can. J. Math., 14 (1962), 69–78.
    [14] R. K. Brown, Univalence of normalized solutions of $W^{\prime\prime}(z)+p(z)W(z) = 0$, Int. J. Math. Math. Sci., 5 (1982), 459–483. https://doi.org/10.1155/S0161171282000441 doi: 10.1155/S0161171282000441
    [15] E. Kreyszig, J. Todd, The radius of univalence of Bessel functions Ⅰ, Illinois J. Math., 4 (1960), 143–149.
    [16] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73 (2008), 155–178.
    [17] A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica, 48 (2006), 13–18.
    [18] S. Kanas, S. R. Mondal, A. D. Mohammed, Relations between the generalized Bessel functions and the Janowski class, Math. Inequal. Appl., 21 (2018), 165–178. https://doi.org/10.7153/mia-2018-21-14 doi: 10.7153/mia-2018-21-14
    [19] S. R. Mondal, A. Swaminathan, Geometric properties of generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 35 (2012), 179–194.
    [20] N. Bohra, V. Ravichandran, Radii problems for normalized Bessel functions of first kind, Comput. Methods Funct. Theory, 18 (2018), 99–123. https://doi.org/10.1007/s40315-017-0216-0 doi: 10.1007/s40315-017-0216-0
    [21] V. Madaan, A. Kumar, V. Ravichandran, Starlikeness associated with lemniscate of Bernoulli, Filomat, 33 (2019), 1937–1955. https://doi.org/10.2298/FIL1907937M doi: 10.2298/FIL1907937M
    [22] A. Baricz, R. Szász, The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl., 12 (2014), 485–509. https://doi.org/10.1142/S0219530514500316 doi: 10.1142/S0219530514500316
    [23] I. Aktaş, A. Baricz, H. Orhan, Bounds for radii of starlikeness and convexity of some special functions, Turk. J. Math., 42 (2018), 211–226. https://doi.org/10.3906/mat-1610-41 doi: 10.3906/mat-1610-41
    [24] I. Aktaş, E. Toklu, H. Orhan, Radii of uniform convexity of some special functions, Turk. J. Math., 42 (2018), 3010–3024. https://doi.org/10.3906/mat-1806-43 doi: 10.3906/mat-1806-43
    [25] E. Deniz, R. Szász, The radius of uniform convexity of Bessel functions, J. Math. Anal. Appl., 453 (2017), 572–588. https://doi.org/10.1016/j.jmaa.2017.03.079 doi: 10.1016/j.jmaa.2017.03.079
    [26] S. Kanas, K. Gangania, Radius of uniformly convex $\gamma$-spirallikeness of combination of derivatives of Bessel functions, Axioms, 12 (2023), 468. https://doi.org/10.3390/axioms12050468 doi: 10.3390/axioms12050468
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(553) PDF downloads(66) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog