Research article Special Issues

Bayesian and classical inference for a novel model: medical and economical real data analysis

  • Received: 10 April 2025 Revised: 04 July 2025 Accepted: 24 July 2025 Published: 01 August 2025
  • MSC : 60B12, 62G30

  • In the literature on distribution theory, numerous probability distributions are applied to predict and model real-world phenomena across diverse applied domains, including the medical and healthcare sectors. In the present paper, we develop a new distributional method, referred to as the new exponential power function distribution. The introduced model is incorporated using the transformed-transformer (T-X) approach. The density function of the newly presented distribution is investigated graphically, revealing three distinct patterns, namely symmetric, asymmetric, complex, and skewed shapes. Similarly, the hazard function patterns of the proposed model are also illustrated, which capture the increasing, unimodal, decreasing, and increasing shapes. Further, we developed several key properties such as the moments, quantile function, moment-generating function, and order statistics. Several classical and Bayesian estimation parameters of the new distribution are provided. A Monte Carlo simulation study is conducted to assess the efficiency of these estimators. Lastly, the practicality and efficiency of the novel distribution were validated using four datasets. It is found that the proposed distribution efficiently analyzed these datasets compared with competitive distributions.

    Citation: Muqrin A. Almuqrin, Mohammed AbaOud. Bayesian and classical inference for a novel model: medical and economical real data analysis[J]. AIMS Mathematics, 2025, 10(8): 17334-17361. doi: 10.3934/math.2025775

    Related Papers:

  • In the literature on distribution theory, numerous probability distributions are applied to predict and model real-world phenomena across diverse applied domains, including the medical and healthcare sectors. In the present paper, we develop a new distributional method, referred to as the new exponential power function distribution. The introduced model is incorporated using the transformed-transformer (T-X) approach. The density function of the newly presented distribution is investigated graphically, revealing three distinct patterns, namely symmetric, asymmetric, complex, and skewed shapes. Similarly, the hazard function patterns of the proposed model are also illustrated, which capture the increasing, unimodal, decreasing, and increasing shapes. Further, we developed several key properties such as the moments, quantile function, moment-generating function, and order statistics. Several classical and Bayesian estimation parameters of the new distribution are provided. A Monte Carlo simulation study is conducted to assess the efficiency of these estimators. Lastly, the practicality and efficiency of the novel distribution were validated using four datasets. It is found that the proposed distribution efficiently analyzed these datasets compared with competitive distributions.



    加载中


    [1] H. Amal, G. N. Said, The inverse Weibull-G familiy, J. Data Sci., 2018,723–742.
    [2] M. A. Meraou, N. M. Al-Kandari, M. Z. Raqab, D. Kundu, Analysis of skewed data by using compound Poisson exponential distribution with applications to insurance claims, J. Stat. Comput. Simul., 92 (2021), 928–956. https://doi.org/10.1080/00949655.2021.1981324 doi: 10.1080/00949655.2021.1981324
    [3] M. A. Meraou, N. M. Al-Kandari, M. Z. Raqab, Univariate and bivariate compound models based on random sum of variates with application to the insurance losses data, J. Stat. Theory Pract., 16 (2022), 56. https://doi.org/10.1007/s42519-022-00282-8 doi: 10.1007/s42519-022-00282-8
    [4] A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, Metron, 71 (2013), 63–79. https://doi.org/10.1007/s40300-013-0007-y doi: 10.1007/s40300-013-0007-y
    [5] B. Thomas, V. M. Chacko, Power generalized DUS transformation in Weibull and Lomax distributions, Reliab.: Theory Appl., 1 (2023), 368–384.
    [6] M. A. Meraou, M. Z. Raqab, D. Kundu, F. A. Alqallaf, Inference for compound truncated Poisson log-normal model with application to maximum precipitation data, Commun. Stat. Simul. Comput., 2024, 1–22. https://doi.org/10.1080/03610918.2024.2328168
    [7] N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31 (2002), 497–512. https://doi.org/10.108/STA-120003130 doi: 10.108/STA-120003130
    [8] G. M. Cordeiro, R. dos Santos Brito, The beta power distribution, Braz. J. Probab. Stat., 26 (2012), 88–112. https://doi.org/10.1214/10-BJPS124
    [9] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641 doi: 10.1093/biomet/84.3.641
    [10] E. M. Almetwally, M. A. Meraou, Application of environmental data with new extension of Nadarajah-Haghighi distribution, Comput. J. Math. Stat. Sci., 1 (2022), 26–41. https://doi.org/10.21608/cjmss.2022.271186 doi: 10.21608/cjmss.2022.271186
    [11] Z. Ahmad, E. Mahmoudi, O. Kharazmi, On modeling the earthquake insurance data via a new member of the T-X family, Comput. Intel. Neurosc., 2020 (2020), 7631495. https://doi.org/10.1155/2020/7631495 doi: 10.1155/2020/7631495
    [12] Z. Ahmad, E. Mahmoudi, S. Dey, S. K. Khosa, Modeling vehicle insurance loss data using a new member of T-X family of distributions, J. Stat. Theory Appl., 19 (2020), 133–147. https://doi.org/10.2991/jsta.d.200421.001 doi: 10.2991/jsta.d.200421.001
    [13] W. He, Z. Ahmad, A. Z. Afify, H. Goual, The arcsine exponentiated-X family: validation and insurance application, Complexity, 2020 (2020), 8394815. https://doi.org/10.1155/2020/8394815 doi: 10.1155/2020/8394815
    [14] M. Meniconi, D. M. Barry, The power function distribution: a useful and simple distribution to assess electrical component reliability, Microelectron. Reliab., 36 (1996), 1207–1212. https://doi.org/10.1016/0026-2714(95)00053-4 doi: 10.1016/0026-2714(95)00053-4
    [15] E. S. A. ElSherpieny, E. M. Almetwally, The exponentiated generalized alpha power family of distribution: properties and applications, Pak. J. Stat. Oper. Res., 18 (2022), 349–367. https://doi.org/10.18187/pjsor.v18i2.3515 doi: 10.18187/pjsor.v18i2.3515
    [16] C. Wang, H. Zhu, Tests of fit for the power function lognormal distribution, PLoS One, 19 (2024), e0298309. https://doi.org/10.1371/journal.pone.0298309 doi: 10.1371/journal.pone.0298309
    [17] H. M. Almongy, E. M. Almetwally, A. E. Mubarak, Marshall-Olkin alpha power Lomax distribution: estimation methods, applications on physics and economics, Pak. J. Stat. Oper. Res., 17 (2021), 137–153. https://doi.org/10.18187/pjsor.v17i1.3402 doi: 10.18187/pjsor.v17i1.3402
    [18] E. Alshawarbeh, M. Z. Arshad, M. Z. Iqbal, M. Ghamkhar, A. Al Mutairi, M. A. Meraou, et al., Modeling medical and engineering data using a new power function distribution: theory and inference, J. Radiat. Res. Appl. Sci., 17 (2024), 100787. https://doi.org/10.1016/j.jrras.2023.100787 doi: 10.1016/j.jrras.2023.100787
    [19] E. A. Elsherpieny, A. Abdel-Hakim, Statistical analysis of Alpha-Power exponential distribution using unified Hybrid censored data and its applications, Comput. J. Math. Stat. Sci., 4 (2025), 283–315.
    [20] E. F. Muhi, N. Oleiwi, N. Al-khairullah, A new family of power function-lindley distribution, Adv. Nonlinear Var. Inequal., 27 (2024), 325–337.
    [21] M. Ahsan-ul-Haq, M. A. Aldahlan, J. Zafar, H. W. Gómez, A. Z. Afify, H. A. Mahra, A new cubic transmuted power-function distribution: properties, inference, and applications, PLoS One, 18 (2023), e0281419. https://doi.org/10.1371/journal.pone.0281419 doi: 10.1371/journal.pone.0281419
    [22] M. H. Tahir, M. Alizadeh, M. Mansoor, G. M. Cordeiro, M. Zubair, The Weibull-power function distribution with applications, Hacettepe J. Math. Stat., 45 (2016), 245–265.
    [23] E. M. Almetwally, Marshall Olkin alpha power extended Weibull distribution: different methods of estimation based on type Ⅰ and type Ⅱ censoring, Gazi Univ. J. Sci., 35 (2022), 293–312. https://doi.org/10.35378/gujs.741755 doi: 10.35378/gujs.741755
    [24] E. Hussam, R. Alharbi, E. M. Almetwally, B. Alruwaili, A. M. Gemeay, F. H. Riad, Single and multiple ramp progressive stress with binomial removal: practical application for industry, Math. Probl. Eng., 2022 (2022), 9558650. https://doi.org/10.1155/2022/9558650 doi: 10.1155/2022/9558650
    [25] D. Bolatova, S. Kadyrov, A. Kashkynbayev, Mathematical modeling of infectious diseases and the impact of vaccination strategies, Math. Biosci. Eng., 21 (2024), 7103–7123. https://doi.org/10.3934/mbe.2024314 doi: 10.3934/mbe.2024314
    [26] K. Velten, D. M. Schmidt, K. Kahlen, Mathematical modeling and simulation: introduction for scientists and engineers, John Wiley & Sons, 2024.
    [27] F. H. Riad, E. Hussam, A. M. Gemeay, R. A. Aldallal, A. Z. Afify, Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data, Math. Biosci. Eng., 19 (2022), 6551–6581. https://doi.org/10.3934/mbe.2022309 doi: 10.3934/mbe.2022309
    [28] S. Wang, W. Chen, M. Chen, Y. Zhou, Maximum likelihood estimation of the parameters of the inverse Gaussian distribution using maximum rank set sampling with unequal samples, Math. Popul. Stud., 30 (2023), 1–21. https://doi.org/10.1080/08898480.2021.1996822 doi: 10.1080/08898480.2021.1996822
    [29] E. M. Almetwally, Application of COVID-19 pandemic by using odd lomax-G inverse Weibull distribution, Math. Sci. Lett., 10 (2021), 47–57. https://doi.org/10.18576/msl/100203 doi: 10.18576/msl/100203
    [30] S. Nasiru, A. G. Abubakari, C. Chesneau, New lifetime distribution for modeling data on the unit interval: properties, applications and quantile regression, Math. Comput. Appl., 27 (2022), 105. https://doi.org/10.3390/mca27060105 doi: 10.3390/mca27060105
    [31] W. Emam, Benefiting from statistical modeling in the analysis of current health expenditure to gross domestic product, AIMS Math., 8 (2023), 12398–12421. https://doi.org/10.3934/math.2023623 doi: 10.3934/math.2023623
    [32] C. Dutang, A. Charpentier, CASdatasets: insurance datasets, 2019. Available from: https://dutangc.perso.math.cnrs.fr/RRepository/.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(585) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(17)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog