Research article

A novel self-adaptive nonlinear grey Bernoulli model for forecasting China's industrial electricity consumption

  • Received: 03 June 2025 Revised: 16 July 2025 Accepted: 23 July 2025 Published: 01 August 2025
  • MSC : 65Q10, 62M10

  • The rigidity of subjectively preset adjustable parameters in the existing NGBM(1,1) model family restricts its ability to handle complex nonlinear time series. To address this issue, this paper proposed a self-adaptive nonlinear grey Bernoulli model [SANGBM(1, 1)] with enhanced predictive capabilities. Three key innovations were introduced. First, hyperparameterized functions were developed to dynamically optimize adjustable parameters, overcoming the rigidity of subjectively preset hyperparameters in the existing NGBM(1,1) model family and improving adaptability. Second, the derived implicit time response formula of the SANGBM(1,1) model fundamentally resolved the jump error inherent in the traditional NGBM(1,1) model. Third, based on the systematic deconstruction of the global sensitivity mechanism of the SANGBM(1,1) model's hyperparameters, a novel data-driven model structure selection algorithm that integrates the time series rolling cross-validation method with the firefly algorithm was designed to enhance generalization performance. Empirical results demonstrate the feasibility and effectiveness of the proposed model. Additionally, China's industrial electricity consumption for the next four years (2023–2026) was predicted, offering valuable references for formulating effective industrial electricity development planning.

    Citation: Xiaozhong Tang, Zhijun Zhu, Xiaomei Liu, Huibin Zhan. A novel self-adaptive nonlinear grey Bernoulli model for forecasting China's industrial electricity consumption[J]. AIMS Mathematics, 2025, 10(8): 17305-17333. doi: 10.3934/math.2025774

    Related Papers:

  • The rigidity of subjectively preset adjustable parameters in the existing NGBM(1,1) model family restricts its ability to handle complex nonlinear time series. To address this issue, this paper proposed a self-adaptive nonlinear grey Bernoulli model [SANGBM(1, 1)] with enhanced predictive capabilities. Three key innovations were introduced. First, hyperparameterized functions were developed to dynamically optimize adjustable parameters, overcoming the rigidity of subjectively preset hyperparameters in the existing NGBM(1,1) model family and improving adaptability. Second, the derived implicit time response formula of the SANGBM(1,1) model fundamentally resolved the jump error inherent in the traditional NGBM(1,1) model. Third, based on the systematic deconstruction of the global sensitivity mechanism of the SANGBM(1,1) model's hyperparameters, a novel data-driven model structure selection algorithm that integrates the time series rolling cross-validation method with the firefly algorithm was designed to enhance generalization performance. Empirical results demonstrate the feasibility and effectiveness of the proposed model. Additionally, China's industrial electricity consumption for the next four years (2023–2026) was predicted, offering valuable references for formulating effective industrial electricity development planning.



    加载中


    [1] S. Ding, K. W. Hipel, Y. Dang, Forecasting China's electricity consumption using a new grey prediction model, Energy, 149 (2018), 314–328. https://doi.org/10.1016/j.energy.2018.01.169 doi: 10.1016/j.energy.2018.01.169
    [2] S. S. Pappas, L. Ekonomou, D. C. Karamousantas, G. E. Chatzarakis, S. K. Katsikas P. Liatsis, Electricity demand loads modeling using AutoRegressive moving average (ARMA) models, Energy, 33 (2008), 1353–1360. https://doi.org/10.1016/j.energy.2008.05.008 doi: 10.1016/j.energy.2008.05.008
    [3] P. M. Maçaira, R. C. Souza, F. L. C. Oliveira, Modelling and forecasting the residential electricity consumption in Brazil with Pegels exponential smoothing techniques, Procedia Comput. Sci., 55 (2015), 328–335. https://doi.org/10.1016/j.procs.2015.07.057 doi: 10.1016/j.procs.2015.07.057
    [4] F. Apadula, A. Bassini, A. Elli, S. Scapin, Relationships between meteorological variables and monthly electricity demand, Appl. Energ. , 98 (2012), 346–356. https://doi.org/10.1016/j.apenergy.2012.03.053 doi: 10.1016/j.apenergy.2012.03.053
    [5] A. S. Meloy, Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models, Energy, 174 (2019), 148–168. https://doi.org/10.1016/j.energy.2019.01.157 doi: 10.1016/j.energy.2019.01.157
    [6] A. Azadeh, S. F. Ghaderi, S. Sohrabkhani, A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran, Energ. Policy, 36 (2008), 2637–2644. https://doi.org/10.1016/j.enpol.2008.02.035 doi: 10.1016/j.enpol.2008.02.035
    [7] M. E. Günay, Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey, Energ. Policy, 90 (2016), 92–101. https://doi.org/10.1016/j.enpol.2015.12.0198 doi: 10.1016/j.enpol.2015.12.0198
    [8] G. Dudek, Neural networks for pattern-based short-term load forecasting: A comparative study, Neurocomputing, 205 (2016), 64–74. https://doi.org/10.1016/j.neucom.2016.04.021 doi: 10.1016/j.neucom.2016.04.021
    [9] J. Deng, Control problems of grey systems, Syst. Control Lett., 1 (1982), 288–294. https://doi.org/10.1016/S0167-6911(82)80025-X doi: 10.1016/S0167-6911(82)80025-X
    [10] C. Zheng, W. Wu, W. Xie, Q. Li, T. Zhang, Forecasting the hydroelectricity consumption of China by using a novel unbiased nonlinear grey Bernoulli model, J. Clean. Prod., 278 (2021), 123903. https://doi.org/10.1016/j.jclepro.2020.123903 doi: 10.1016/j.jclepro.2020.123903
    [11] Y. Liu, Y. Yang, F. Pan, D. Xue, A conformable fractional unbiased grey model with a flexible structure and its application in hydroelectricity consumption prediction, J. Clean. Prod., 367 (2022), 133029. https://doi.org/10.1016/j.jclepro.2022.133029 doi: 10.1016/j.jclepro.2022.133029
    [12] Z. Yang, Y. Wang, Y. Zhou, L. Wang, L. Ye, Y. Luo, Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model, Energy, 278 (2023), 127824. https://doi.org/10.1016/j.energy.2023.127824 doi: 10.1016/j.energy.2023.127824
    [13] X. Guo, Y. Dang, S. Ding, Z. Cai, Y. Li, A new information priority grey prediction model for forecasting wind electricity generation with targeted regional hierarchy, Expert Syst. Appl., 252 (2024), 124199. https://doi.org/10.1016/j.eswa.2024.124199 doi: 10.1016/j.eswa.2024.124199
    [14] X. Tang, N. Xie, A. Hu, Forecasting annual foreign tourist arrivals to China by incorporating firefly algorithm into fractional non-homogeneous discrete Grey model, Kybernetes, 51 (2022), 676–693. https://doi.org/10.1108/K-11-2020-0787 doi: 10.1108/K-11-2020-0787
    [15] X. Sun, W. Sun, J. Wang, Y. Zhang, Y. Gao, Using a Grey–Markov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China, Tourism Manage. , 52 (2016), 369–379. https://doi.org/10.1016/j.tourman.2015.07.005 doi: 10.1016/j.tourman.2015.07.005
    [16] N. Li, E. S. Razia, H. Ba, A novel damped conformable fractional grey Bernoulli model and its applications in energy prediction with uncertainties, Appl. Math. Model., 130 (2024), 94–118. https://doi.org/10.1016/j.apm.2024.02.030 doi: 10.1016/j.apm.2024.02.030
    [17] W. Wu, X. Ma, B. Zeng, Y. Zhang, W. Li, Forecasting short-term solar energy generation in Asia Pacific using a nonlinear grey Bernoulli model with time power term, Energy Environ., 32 (2021), 759–783. https://doi.org/10.1177/0958305X20960700 doi: 10.1177/0958305X20960700
    [18] X. Xiao, H. Duan, J. Wen, A novel car-following inertia gray model and its application in forecasting short-term traffic flow, Appl. Math. Model., 87 (2020), 546–570. https://doi.org/10.1016/j.apm.2020.06.020 doi: 10.1016/j.apm.2020.06.020
    [19] V. B. Getanda, P. K. Kihato, P. K. Hinga, H. Oya, Data grouping and modified initial condition in grey model improvement for short-term traffic flow forecasting, Automatika, 64 (2023), 178–188. https://doi.org/10.1080/00051144.2022.2119500 doi: 10.1080/00051144.2022.2119500
    [20] C. I. Chen, Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate, Chaos Soliton. Fract., 37 (2008), 278–287. https://doi.org/10.1016/j.chaos.2006.08.024 doi: 10.1016/j.chaos.2006.08.024
    [21] S. Ding, R. Li, S. Wu, A novel composite forecasting framework by adaptive data preprocessing and optimized nonlinear grey Bernoulli model for new energy vehicles sales, Commun. Nonlinear Sci., 99 (2021), 105847. https://doi.org/10.1016/j.cnsns.2021.105847 doi: 10.1016/j.cnsns.2021.105847
    [22] J. Zhou, R. Fang, Y. Li, Y. Zhang, B. Peng, Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization, Appl. Math. Comput., 207 (2009), 292–299. https://doi.org/10.1016/j.amc.2008.10.045 doi: 10.1016/j.amc.2008.10.045
    [23] C. I. Chen, P. H. Hsin, C. S. Wu, Forecasting Taiwan's major stock indices by the Nash nonlinear grey Bernoulli model, Expert Syst. Appl., 37 (2010), 7557–7562. https://doi.org/10.1016/j.eswa.2010.04.088 doi: 10.1016/j.eswa.2010.04.088
    [24] Z. X. Wang, K. W. Hipel, Q. Wang, S. W. He, An optimized NGBM(1,1) model for forecasting the qualified discharge rate of industrial wastewater in China, Appl. Math. Model., 35 (2011), 5524–5532. https://doi.org/10.1016/j.apm.2011.05.022 doi: 10.1016/j.apm.2011.05.022
    [25] P. H. Hsin, C. I. Chen, Application of game theory on parameter optimization of the novel two-stage Nash nonlinear grey Bernoulli model, Commun. Nonlinear Sci., 27 (2015), 168–174. https://doi.org/10.1016/j.cnsns.2015.03.006 doi: 10.1016/j.cnsns.2015.03.006
    [26] Y. An, Z. Zou, Y. Zhao, Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM(1,1) model, J. Environ. Sci., 29 (2015), 158–164. https://doi.org/10.1016/j.jes.2014.10.005 doi: 10.1016/j.jes.2014.10.005
    [27] Y. Y. Chen, G. W. Chen, A. H. Chiou, S. H. Chen, Forecasting nonlinear time series using an adaptive nonlinear grey Bernoulli model: Cases of energy consumption, J. Grey Syst., 29 (2017), 75–93.
    [28] X. Guo, S. Liu, Y. Yang, A prediction method for plasma concentration by using a nonlinear grey Bernoulli combined model based on a self-memory algorithm, Comput. Biol. Med., 105 (2019), 81–91. https://doi.org/10.1016/j.compbiomed.2018.12.004 doi: 10.1016/j.compbiomed.2018.12.004
    [29] J. Lu, W. Xie, H. Zhou, A. Zhang, An optimized nonlinear grey Bernoulli model and its applications, Neurocomputing, 177 (2016), 206–214. https://doi.org/10.1016/j.neucom.2015.11.032 doi: 10.1016/j.neucom.2015.11.032
    [30] W. Wu, X. Ma, B. Zeng, Y. Wang, W. Cai, Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model, Renew. Energ. , 140 (2019), 70–87. https://doi.org/10.1016/j.renene.2019.03.006 doi: 10.1016/j.renene.2019.03.006
    [31] J. Xiao, X. Xiao, Forecast of clean energy generation in China based on new information priority nonlinear grey Bernoulli model, Environ. Sci. Pollut. R. , 30 (2023), 110220–110239. https://doi.org/10.1007/s11356-023-30035-4 doi: 10.1007/s11356-023-30035-4
    [32] B. Wei, L. Yang, N. Xie, Nonlinear grey Bernoulli model with physics-preserving Cusum operator, Expert Syst. Appl., 229 (2023), 120466. https://doi.org/10.1016/j.eswa.2023.120466 doi: 10.1016/j.eswa.2023.120466
    [33] S. Ding, X. Shen, Z. Cai, Data-driven multi-step solar photovoltaic predictions with limited and uncertain information: Insights from a collaboratively-optimized nonlinear grey Bernoulli model, Expert Syst. Appl., 258 (2024), 125170. https://doi.org/10.1016/j.eswa.2024.125170 doi: 10.1016/j.eswa.2024.125170
    [34] W. Wu, X. Ma, B. Zeng, W. Lv, Y. Wang, W. Li, A novel Grey Bernoulli model for short-term natural gas consumption forecasting, Appl. Math. Model., 84 (2020), 393–404. https://doi.org/10.1016/j.apm.2020.04.006 doi: 10.1016/j.apm.2020.04.006
    [35] X. Ma, Q. He, W. Li, W. Wu, Time-delayed fractional grey Bernoulli model with independent fractional orders for fossil energy consumption forecasting, Eng. Appl. Artif. Intel. , 155 (2025), 110942. https://doi.org/10.1016/j.engappai.2025.110942 doi: 10.1016/j.engappai.2025.110942
    [36] C. Chen, H. Chen, S. Chen, Forecasting of foreign exchange rates of Taiwan's major trading partners by novel nonlinear grey Bernoulli model NGBM(1, 1), Commun. Nonlinear Sci., 13 (2008), 1194–1204. https://doi.org/10.1016/j.cnsns.2006.08.008 doi: 10.1016/j.cnsns.2006.08.008
    [37] H. Pao, H. Fu, C. Tseng, Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model, Energy, 40 (2012), 400–409. https://doi.org/10.1016/j.energy.2012.01.037 doi: 10.1016/j.energy.2012.01.037
    [38] U. Şahin, Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model, Sustain. Prod. Consump., 25 (2021), 1–14. https://doi.org/10.1016/j.spc.2020.07.009 doi: 10.1016/j.spc.2020.07.009
    [39] X. Liu, N. Xie, A nonlinear grey forecasting model with double shape parameters and its application, Appl. Math. Comput., 360 (2019), 203–212. https://doi.org/10.1016/j.amc.2019.05.012 doi: 10.1016/j.amc.2019.05.012
    [40] W. Wu, W. Xie, C. Liu, T. Zhang, A novel fractional discrete nonlinear grey Bernoulli model for forecasting the wind turbine capacity of China, Grey Syst., 12 (2022), 357–375. https://doi.org/10.1108/GS-08-2020-0113 doi: 10.1108/GS-08-2020-0113
    [41] Z. Zhou, Machine learning, 1 Eds., Tsinghua University Press, Beijing, 2016.
    [42] W. Wu, X. Ma, B. Zeng, Y. Zhang, A conformable fractional-order grey Bernoulli model with optimized parameters and its application in forecasting Chongqing's energy consumption, Expert Syst. Appl., 255 (2024), 124534. https://doi.org/10.1016/j.eswa.2024.124534 doi: 10.1016/j.eswa.2024.124534
    [43] K. Yin, Y. Geng, X. Li, Improved grey prediction model based on exponential grey action quantity, J. Syst. Eng. Electron., 29 (2018), 560–570. https://doi.org/10.21629/JSEE.2018.03.13 doi: 10.21629/JSEE.2018.03.13
    [44] B. Zeng, W. Meng, M. Tong, A self-adaptive intelligence grey predictive model with alterable structure and its application, Eng. Appl. Artif. Intel., 50 (2016), 236–244. https://doi.org/10.1016/j.engappai.2015.12.011 doi: 10.1016/j.engappai.2015.12.011
    [45] B. Zeng, S. Liu, A self-adaptive intelligence gray prediction model with the optimal fractional order accumulating operator and its application, Math. Method. Appl. Sci., 40 (2017), 7843–7857. https://doi.org/10.1002/mma.4565 doi: 10.1002/mma.4565
    [46] S. Liu, Y. Yang, J. Forrest, Grey data analysis: Methods, models and applications, 1 Eds., Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-1841-1
    [47] Y. Wang, Z. Yang, Y. Zhou, H. Liu, R. Yang, L. Sun, F. E. Sapnken, G. Narayanan, A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production, Renew. Energy, 239 (2025), 122052. https://doi.org/10.1016/j.renene.2024.122052 doi: 10.1016/j.renene.2024.122052
    [48] X. S. Yang, Nature-inspired metaheuristic algorithms, 2 Eds., Frome: Luniver Press, 2010.
    [49] I. A. Ibrahim, T. Khatib, A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm, Energy Convers. Manage., 138 (2017), 413–425. https://doi.org/10.1016/j.enconman.2017.02.006 doi: 10.1016/j.enconman.2017.02.006
    [50] L. Xiao, W. Shao, T. Liang, C. Wang, A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting, Appl. Energ., 167 (2016), 135–153. https://doi.org/10.1016/j.apenergy.2016.01.050 doi: 10.1016/j.apenergy.2016.01.050
    [51] T. Li, X. Ma, W. Wu, Q. He, Research on novel nonlinear Bernoulli grey model with hybrid accumulation and its application in forecasting natural gas production and consumption, Commun. Nonlinear Sci. , 146 (2025), 108773. https://doi.org/10.1016/j.cnsns.2025.108773 doi: 10.1016/j.cnsns.2025.108773
    [52] V. N. Vapnik, The nature of statistical learning theory, New York: Springer, 1995. https://doi.org/10.1007/978-1-4757-2440-0
    [53] G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50 (2003), 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0 doi: 10.1016/S0925-2312(01)00702-0
    [54] M. Taherkhani, R. Safabakhsh, A novel stability-based adaptive inertia weight for particle swarm optimization, Appl. Soft Comput., 38 (2016), 281–295. https://doi.org/10.1016/j.asoc.2015.10.004 doi: 10.1016/j.asoc.2015.10.004
    [55] S. Katoch, S. Chauhan, V. Kumar, A review on genetic algorithm: Past, present, and future, Multimed. Tools Appl., 80 (2021), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6 doi: 10.1007/s11042-020-10139-6
    [56] X. Tang, N. Xie, A self-adaptive grey forecasting model and its application, J. Syst. Eng. Electron., 33 (2022), 665–673. https://doi.org/10.23919/JSEE.2022.000061 doi: 10.23919/JSEE.2022.000061
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(849) PDF downloads(128) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog