This paper focused on the robust stability of switched Boolean networks (SBNs) subject to external disturbances and one-bit function perturbation. The reachable sets of a perturbed state before and after function perturbation were constructed, and some basic properties of these reachable sets were presented. Based on the reachable sets of a perturbed state, a necessary and sufficient condition was proposed to verify the robust stability of SBNs with one-bit function perturbation.
Citation: Zhiqiao Tian, Haitao Li. Robust stability of switched Boolean networks with external disturbances and function perturbation[J]. AIMS Mathematics, 2025, 10(7): 17291-17304. doi: 10.3934/math.2025773
This paper focused on the robust stability of switched Boolean networks (SBNs) subject to external disturbances and one-bit function perturbation. The reachable sets of a perturbed state before and after function perturbation were constructed, and some basic properties of these reachable sets were presented. Based on the reachable sets of a perturbed state, a necessary and sufficient condition was proposed to verify the robust stability of SBNs with one-bit function perturbation.
| [1] |
M. Arcak, A. Teel, P. Kokotovic, Robust nonlinear control of feedforward systems with unmodeled dynamics, Automatica, 37 (2001), 265–272. https://doi.org/10.1016/S0005-1098(00)00138-2 doi: 10.1016/S0005-1098(00)00138-2
|
| [2] |
T. Zhou, Y. Zhang, On the stability and robust stability of networked dynamic systems, IEEE Trans. Autom. Control, 61 (2016), 1595–1600. http://dx.doi.org/10.1109/TAC.2015.2471855 doi: 10.1109/TAC.2015.2471855
|
| [3] |
S. Q. Wang, H. Li, H. Li, H. Y. Shi, Q. B. Sun, P. Li, Robust dynamic output feedback predictive fault-tolerant control for discrete uncertain systems, Optim. Control Appl. Methods, 45 (2024), 2791–2815. http://dx.doi.org/10.1002/oca.3186 doi: 10.1002/oca.3186
|
| [4] |
X. Y. Ma, M. S. Zhao, J. W. Liang, X. Y. Xiao, Y. Wang, Z. H. Yuan, et al., Robust practical stability region partition considering parameter uncertainty and volatility for direct-drive wind power system, IEEE Trans. Circuits Syst. I. Regul. Pap., 72 (2025), 2302–2313. http://dx.doi.org/10.1109/TCSI.2024.3472049 doi: 10.1109/TCSI.2024.3472049
|
| [5] |
L. Arditti, G. Como, F. Fagnani, M. Vanelli, Robust coordination of linear threshold dynamics on directed weighted networks, IEEE Trans. Autom. Control, 69 (2024), 6515–6529. http://dx.doi.org/10.1109/TAC.2024.3371882 doi: 10.1109/TAC.2024.3371882
|
| [6] |
D. D. Huang, W. J. Sun, Y. W. Zhou, P. W. Li, F. Chen, H. W. Chen, et al., Mutations of key driver genes in colorectal cancer progression and metastasis, Cancer Metastasis Rev., 37 (2018), 173–187. http://dx.doi.org/10.1007/s10555-017-9726-5 doi: 10.1007/s10555-017-9726-5
|
| [7] |
S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theoret. Biol., 22 (1969), 437–467. http://dx.doi.org/10.1016/0022-5193(69)90015-0 doi: 10.1016/0022-5193(69)90015-0
|
| [8] |
S. Moschoyiannis, E. Chatzaroulas, V. Sliogeris, Y. H. Wu, Deep reinforcement learning for stabilization of large-scale probabilistic Boolean networks, IEEE Trans. Control Netw. Syst., 10 (2023), 1412–1423. http://dx.doi.org/10.1109/TCNS.2022.3232527 doi: 10.1109/TCNS.2022.3232527
|
| [9] |
J. Zhong, Q. Y. Pan, W. Y. Xu, B. Chen, A framework of pinning control for nonperiodical stable behaviors of large-scale asynchronous Boolean networks, IEEE Trans. Autom. Control, 69 (2024), 5711–5726. http://dx.doi.org/10.1109/TAC.2024.3351553 doi: 10.1109/TAC.2024.3351553
|
| [10] |
N. H. El-Farra, A. Gani, P. D. Christofides, Analysis of mode transitions in biological networks, AIChE J., 51 (2005), 2220–2234. http://dx.doi.org/10.1002/aic.10499 doi: 10.1002/aic.10499
|
| [11] |
H. T. Li, Y. Z. Wang, Z. B. Liu, Stability analysis for switched Boolean networks under arbitrary switching signals, IEEE Trans. Autom. Control, 59 (2014), 1978–1982. http://dx.doi.org/10.1109/TAC.2014.2298731 doi: 10.1109/TAC.2014.2298731
|
| [12] |
Y. F. Xiao, E. R. Dougherty, The impact of function perturbations in Boolean networks, Bioinformatics, 23 (2007), 1265–1273. http://dx.doi.org/10.1093/bioinformatics/btm093 doi: 10.1093/bioinformatics/btm093
|
| [13] |
Y. X. Ren, X. Y. Ding, J. Zhong, J. Q. Lu, Robust stability in distribution of Boolean networks under multi-bits stochastic function perturbations, Nonlinear Anal. Hybrid Syst., 42 (2021), 101095. http://dx.doi.org/10.1016/j.nahs.2021.101095 doi: 10.1016/j.nahs.2021.101095
|
| [14] | M. Y. Qin, H. T. Li, G. D. Zhao, Robust set stability of implicit Boolean networks with time delay and function perturbation, Int. J. Syst. Sci., 2025, 1–11. http://dx.doi.org/10.1080/00207721.2025.2519195 |
| [15] | D. Z. Cheng, H. S. Qi, Z. Q. Li, Analysis and control of Boolean networks: a semi-tensor product approach, London: Springer, 2011. https://doi.org/10.1007/978-0-85729-097-7 |
| [16] |
H. T. Li, Y. Z. Wang, Robust stability and stabilisation of Boolean networks with disturbance inputs, Int. J. Syst. Sci., 48 (2016), 750–756. http://dx.doi.org/10.1080/00207721.2016.1212433 doi: 10.1080/00207721.2016.1212433
|
| [17] |
X. Wang, J. W. Xia, J. Feng, S. H. Fu, Robust stability of Boolean networks with data loss and disturbance inputs, Neural Netw., 179 (2024), 106504. http://dx.doi.org/10.1016/j.neunet.2024.106504 doi: 10.1016/j.neunet.2024.106504
|
| [18] |
J. Zhong, D. W. C. Ho, J. Q. Lu, W. Y. Xu, Global robust stability and stabilization of Boolean network with disturbances, Automatica, 84 (2017), 142–148. http://dx.doi.org/10.1016/j.automatica.2017.07.013 doi: 10.1016/j.automatica.2017.07.013
|
| [19] |
B. W. Li, J. G. Lou, Y. Liu, Z. Wang, Robust invariant set analysis of Boolean networks, Complexity, 2019 (2019), 2731395. http://dx.doi.org/10.1155/2019/2731395 doi: 10.1155/2019/2731395
|
| [20] |
F. F. Li, Global stability at a limit cycle of switched Boolean networks under arbitrary switching signals, Neurocomputing, 133 (2014), 63–66. http://dx.doi.org/10.1016/j.neucom.2013.11.031 doi: 10.1016/j.neucom.2013.11.031
|
| [21] |
H. W. Chen, J. L. Liang, T. W. Huang, J. D. Cao, Synchronization of arbitrarily switched Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 28 (2017), 612–619. http://dx.doi.org/10.1109/TNNLS.2015.2497708 doi: 10.1109/TNNLS.2015.2497708
|
| [22] |
X. J. Xu, Y. S. Liu, H. T. Li, F. E. Alsaadi, Synchronization of switched Boolean networks with impulsive effects, Int. J. Biomath., 11 (2018), 1850080. http://dx.doi.org/10.1142/S1793524518500808 doi: 10.1142/S1793524518500808
|
| [23] |
Y. Y. Yu, M. Meng, J. Feng, Y. Gao, An adjoint network approach to design stabilizable switching signals of switched Boolean networks, Appl. Math. Comput., 357 (2019), 12–22. http://dx.doi.org/10.1016/j.amc.2019.02.067 doi: 10.1016/j.amc.2019.02.067
|
| [24] |
Q. L. Zhang, J. Feng, F. Xiao, B. Wei, Output tracking of switched Boolean networks via self-triggered control, IEEE Trans. Control Netw. Syst., 11 (2024), 1621–1630. http://dx.doi.org/10.1109/TCNS.2024.3354853 doi: 10.1109/TCNS.2024.3354853
|
| [25] |
J. H. Wu, Y. Liu, Q. H. Ruan, J. G. Lou, Robust stability of switched Boolean networks with function perturbation, Nonlinear Anal. Hybrid Syst., 46 (2022), 101216. http://dx.doi.org/10.1016/j.nahs.2022.101216 doi: 10.1016/j.nahs.2022.101216
|
| [26] |
X. R. Yang, H. T. Li, Asymptotical stability and stabilization of probabilistic Boolean networks subject to function perturbation, Int. J. Control, 95 (2022), 3118–3126. http://dx.doi.org/10.1080/00207179.2021.1955977 doi: 10.1080/00207179.2021.1955977
|
| [27] |
J. Zhong, S. N. Lin, Y. Wang, Y. Q. Wang, Set controllability of Boolean control networks under stochastic function perturbation, IEEE Trans. Circuits Syst. II Express Briefs, 71 (2024), 1286–1290. http://dx.doi.org/10.1109/TCSII.2023.3321291 doi: 10.1109/TCSII.2023.3321291
|
| [28] |
Y. X. Ren, J. Q. Lu, Y. Liu, K. B. Shi, Cluster synchronization of Boolean networks under probabilistic function perturbation, IEEE Trans. Circuits Syst. II Express Briefs, 69 (2022), 504–508. http://dx.doi.org/10.1109/TCSII.2021.3086985 doi: 10.1109/TCSII.2021.3086985
|
| [29] |
Y. Liu, B. W. Li, H. W. Chen, J. D. Cao, Function perturbations on singular Boolean networks, Automatica, 84 (2017), 36–42. http://dx.doi.org/10.1016/j.automatica.2017.06.035 doi: 10.1016/j.automatica.2017.06.035
|
| [30] |
L. Deng, J. S. Wang, F. X. Zhang, Robust set stability for switched Boolean networks under one-bit function perturbation, IEEE Access, 12 (2024), 89621–89627. http://dx.doi.org/10.1109/ACCESS.2024.3419231 doi: 10.1109/ACCESS.2024.3419231
|
| [31] |
Y. H. Sun, G. Feng, J. D. Cao, Robust stochastic stability analysis of genetic regulatory networks with disturbance attenuation, Neurocomputing, 79 (2012), 39–49. http://dx.doi.org/10.1016/j.neucom.2011.09.023 doi: 10.1016/j.neucom.2011.09.023
|
| [32] |
L. Deng, X. J. Cao, J. L. Zhao, One-bit function perturbation impact on robust set stability of Boolean networks with disturbances, Mathematics, 12 (2024), 1–13. http://dx.doi.org/10.3390/math12142258 doi: 10.3390/math12142258
|
| [33] |
Y. Q. Guo, Y. Ding, D. Xie, Invariant subset and set stability of Boolean networks under arbitrary switching signals, IEEE Trans. Autom. Control, 62 (2017), 4209–4214. http://dx.doi.org/10.1109/TAC.2017.2688409 doi: 10.1109/TAC.2017.2688409
|
| [34] |
X. S. Kong, H. T. Li, Disturbance decoupling controller design of switched Boolean control networks in recursion, Nonlinear Anal. Hybrid Syst., 56 (2025), 101558. http://dx.doi.org/10.1016/j.nahs.2024.101558 doi: 10.1016/j.nahs.2024.101558
|
| [35] |
X. S. Kong, H. T. Li, Time-variant feedback stabilization of constrained delayed Boolean networks under nonuniform sampled-data control, Int. J. Control Autom. Syst., 19 (2021), 1819–1827. http://dx.doi.org/10.1007/s12555-020-0204-4 doi: 10.1007/s12555-020-0204-4
|
| [36] |
X. D. Gui, J. R. Wang, D. Shen, Observability for Markovian jump Boolean network with random delay effect in states, Qual. Theory Dyn. Syst., 22 (2023), 21. http://dx.doi.org/10.1007/s12346-022-00721-8 doi: 10.1007/s12346-022-00721-8
|