This research study was focused on investigating a newly defined subclass of analytic functions, denoted as $ R_{\sin _{q}} $ that was affiliated with the $ q $-analogue of sine function that was defined in the open unit disk. The study examined the $ q $-analogue of the sine function, with a focus on analyzing the upper bound of second and third order Hankel determinants, addressing coefficient problems, investigating the Krushkal inequality and estimating certain sharp bounds for coefficient problems for the corresponding subclass $ R_{\sin _{q}} $. All computed bounds were sharp.
Citation: Rubab Nawaz, Sarfraz Nawaz Malik, Daniel Breaz, Luminiţa-Ioana Cotîrlă. Analysis of coefficient functionals for analytic functions with bounded turning linked with $ q $-Sine function[J]. AIMS Mathematics, 2025, 10(7): 17274-17290. doi: 10.3934/math.2025772
This research study was focused on investigating a newly defined subclass of analytic functions, denoted as $ R_{\sin _{q}} $ that was affiliated with the $ q $-analogue of sine function that was defined in the open unit disk. The study examined the $ q $-analogue of the sine function, with a focus on analyzing the upper bound of second and third order Hankel determinants, addressing coefficient problems, investigating the Krushkal inequality and estimating certain sharp bounds for coefficient problems for the corresponding subclass $ R_{\sin _{q}} $. All computed bounds were sharp.
| [1] | A. W. Goodman, Univalent functions, Volume Ⅰ and Ⅱ, Polygonal Pub. House: Washington, DC, USA, 1983. |
| [2] | P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Iapan, 259 (1983). |
| [3] | T. H. Macgregor, Functions whose derivative has a positive real part, T. Am. Math. Soc., 104 (1962), 532–537. |
| [4] | A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7 (2006), 1–5. |
| [5] | A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for starlike and convex functions, Int. J. Ineq. Math. Anal, 1 (2007), 619–625. |
| [6] | K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, arXiv preprint arXiv: 0910.3779, (2009). https://doi.org/10.48550/arXiv.0910.3779 |
| [7] |
P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediter. J. Math., 14 (2016), 19. https://doi.org/10.1007/s00009-016-0829-y doi: 10.1007/s00009-016-0829-y
|
| [8] | C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112. |
| [9] | C. Pommerenke, On starlike and close-to-convex functions, Proc. Lond. Math. Soc., 3 (1963), 290–304. |
| [10] | M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., 1 (1933), 85–89. |
| [11] | S. Altinkaya, S. Yalcin, Third Hankel determinant for Bazilevic functions, Adv. Math., 5 (2016), 91–96. |
| [12] | M. Arif, K. I. Noor, M. Raza, Hankel determinant problem of a subclass of analytic functions, J. Inequal. Appl., (2012), 1–7. |
| [13] |
D. Bansal, S. Maharana, J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., 52 (2015), 1139–1148. http://dx.doi.org/10.4134/JKMS.2015.52.6.1139 doi: 10.4134/JKMS.2015.52.6.1139
|
| [14] |
N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., 11 (2017), 429–439. http://dx.doi.org/0.7153/jmi-11-36 doi: 10.7153/jmi-11-36
|
| [15] |
M. Raza, S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., (2013), 1–8. https://doi.org/10.1186/1029-242X-2013-412 doi: 10.1186/1029-242X-2013-412
|
| [16] |
M. Raza, A. Riaz, Q. Xin, S. N. Malik, Hankel determinants and coefficient estimates for starlike functions related to symmetric Booth Lemniscate, Symmetry, 14 (2022), 1366. https://doi.org/10.3390/sym14071366 doi: 10.3390/sym14071366
|
| [17] |
R. Nawaz, R. Fayyaz, D. Breaz, L. I. Cotîrlă, Sharp Coefficient Estimates for Analytic Functions Associated with Lemniscate of Bernoulli, Mathematics, 12 (2024), 2309. https://doi.org/10.3390/math12152309 doi: 10.3390/math12152309
|
| [18] | F. H. Jackson, On $\mathit{q}$-functions and certain difference operator, Trans. R. Soc. Edinb., 46 (1909), 253–281. |
| [19] | F. H. Jackson, On $\mathit{q}$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
| [20] | H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of $\mathit{q}$-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61–69. |
| [21] |
S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. J. Riaz, Some coefficient inequalities of $\mathit{q}$ -starlike functions associated with conic domain defined by $q$-derivative, J. Funct. Space., 1 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
|
| [22] |
S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of $ \mathit{q}$-starlike functions, Symmetry, 11 (2019), 347. https://doi.org/10.3390/sym11030347 doi: 10.3390/sym11030347
|
| [23] |
Y. Taj, S. N. Malik, A. Cătaş, J. S. Ro, F. Tchier, F. M. Tawfiq, On coefficient inequalities of starlike functions related to the $\mathit{q}$-Analog of cosine functions defined by the fractional $\mathit{q}$-differential operator, Fractal Fract., 7 (2023), 782. https://doi.org/10.3390/fractalfract7110782 doi: 10.3390/fractalfract7110782
|
| [24] |
Y. Taj, S. Zainab, Q. Xin, F. M. Tawfiq, M. Raza, S. N. Malik, Certain coefficient problems for $\mathit{q}$-starlike functions associated with $\mathit{q}$-analogue of sine function, Symmetry, 14 (2022), 2200. https://doi.org/10.3390/sym14102200 doi: 10.3390/sym14102200
|
| [25] |
J. Gong, M. G. Khan, H. Alaqad, B. Khan, Sharp inequalities for $\mathit{q}$-starlike functions associated with differential subordination and $\mathit{q}$-calculus, AIMS Math., 9 (2024), 28421–28446. https://doi.org/10.3934/math.20241379 doi: 10.3934/math.20241379
|
| [26] |
H. M. Srivastava, Q. Z. Ahmad, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of $\mathit{q}$-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 181. https://doi.org/10.3390/math7020181 doi: 10.3390/math7020181
|
| [27] |
H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of $ \mathit{q}$-starlike functions associated with the q-exponential function, Bull. Sci. Math., 167 (2021), 102942. https://doi.org/10.1016/j.bulsci.2020.102942 doi: 10.1016/j.bulsci.2020.102942
|
| [28] | C. Zhang, B. Khan, T. G. Shaba, J. S. Ro, S. Araci, M. G. Khan, Applications of $\mathit{q}$-Hermite polynomials to Subclasses of analytic and bi-Univalent Functions, Fractal Fract., 6 (2022), 420. |
| [29] |
L. Shi, B. Ahmad, N. Khan, M. G. Khan, S. Araci, W. K. Mashwani, B. Khan, Coefficient estimates for a subclass of meromorphic multivalent $\mathit{q}$-close-to-convex functions, Symmetry, 13 (2021), 1840. https://doi.org/10.3390/sym13101840 doi: 10.3390/sym13101840
|
| [30] |
M. Raza, H. Naz, S. N. Malik, S. Islam, On $\mathit{q}$ -Analogue of Differential Subordination Associated with Lemniscate of Bernoulli, J. Math., 1 (2021), 5353372. https://doi.org/10.1155/2021/5353372 doi: 10.1155/2021/5353372
|
| [31] |
M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of $\mathit{q}$-starlike functions associated with $k$-Fibonacci numbers, Symmetry, 12 (2020), 1043. https://doi.org/10.3390/sym12061043 doi: 10.3390/sym12061043
|
| [32] |
S. Zainab, M. Raza, Q. Xin, M. Jabeen, S. N. Malik, S. Riaz, On $\mathit{q}$-starlike functions defined by $q$-Ruscheweyh differential operator in symmetric conic domain, Symmetry, 13 (2021), 1947. https://doi.org/10.3390/sym13101947 doi: 10.3390/sym13101947
|
| [33] |
A. Saliu, I. Al-Shbeil, J. Gong, S. M. Malik, N. Aloraini, Properties of $\mathit{q}$-symmetric starlike functions of Janowski type, Symmetry, 14 (2022), 1907. https://doi.org/10.3390/sym14091907 doi: 10.3390/sym14091907
|
| [34] | M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 1615–1630. |
| [35] | R. J. Libera, E. J. Złotkiewicz, Early coefficient of the inverse of a regular convex function, Proc. Am. Math. Soc., 85 (1982), 225–230. |
| [36] |
V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci., 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003 doi: 10.1016/j.crma.2015.03.003
|
| [37] | S. L. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv preprint arXiv, (2014), 1408. https://doi.org/10.48550/arXiv.1408.1948 |
| [38] |
M. G. Khan, N. E. Cho, T. G. Shaba, B. Ahmad, W. K. Mashwani, Coefficient functionals for a class of bounded turning functions related to modified sigmoid function, AIMS Math., 7 (2022). 3133–3149, https://doi.org/10.3934/math.2022173 doi: 10.3934/math.2022173
|
| [39] |
G. Murugusundaramoorthy, M. G. Khan, B. Ahmad, V. K. V. K. Mashwani, T. Abdeljawad, Z. Salleh, Coefficient functionals for a class of bounded turning functions connected to three leaf function, J. Math. Comput., Sci., 28 (2023), 213–223. http://dx.doi.org/10.22436/jmcs.028.03.01 doi: 10.22436/jmcs.028.03.01
|