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1. Introduction

The class A comprises analytic functions f defined in the open unit disk

δ̄ = {z ∈ C : |z| < 1} ,

with the normalization properties f (0) = 0 and f ′ (0) = 1, has the following Taylor series

f (z) = z +
∞∑

n=2

ξnzn, z ∈ δ̄. (1.1)
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All univalent functions f that are analytic in the open unit disk and are normalized belong to the class
S . This can be stated as given below:

S =
{
f ∈ A : f is univalent in δ̄

}
.

This class S established the foundation for current studies in this field. The class of starlike functions
in δ̄ is represented by S ∗, consisting of such analytic functions f which satisfy the ℜ

(
z f
′
(z)

f (z)

)
> 0,

z ∈ δ̄, condition; see [1]. One of the most significant topics in geometric function theory is the class of
starlike functions. Let P [2] denote the class of analytic functions p in δ̄ with positive real part on δ̄
given by

p(z) = 1 +
∞∑

n=1

℘nzn, z ∈ δ̄. (1.2)

Next, we recall the concept of subordination. Let ω be an analytic function in δ̄; it is called a Schwarz
function if it satisfies the conditions ω(0) = 0 and |ω(z)| < 1 for all z in δ̄. Let ℏ (z) and Υ (z) be analytic
functions in δ̄, and if there exists a Schwarz function ω in δ̄ such that

ℏ(z) = Υ(ω(z)), z ∈ δ̄, (1.3)

then ℏ is said to be subordinate to the function Υ, which is denoted by ℏ ≺ Υ. Now, we define the
well-known class of bounded turning function Rφ by using the subordination relation as follows:

Rφ =
{
f ∈ S : f ′(z) ≺ φ (z) , z ∈ δ̄

}
,

where φ (z) can be any suitable function. The R denotes the class of functions with bounded turnings;
which are analytic and satisfy ℜ ( f ′ (z)) > 0, z ∈ δ̄ and are normalized by f (0) = 0 and f ′ (0) = 1.
MacGregor [3] conducted a comprehensive study of the subclasses of R. The class R was initially
introduced by Janteng et.al [4, 5], marking a significant contribution to the study of analytic functions.
The class R has several interesting properties that are utilized in complex analysis and related fields.
For example, it has been used to study the properties of extremal functions, with intention to derive
sharp estimates for the growth of Taylor coefficients and to analyze the convergence of numerical
methods for solving certain differential equations. Moreover, the R class provides a framework for
understanding the geometric properties of analytic functions.

Babalola [6] calculated the upper bounds of Hankel determinants of third order for the subfamilies
of R. Zaprawa improved the results of Babalola; see [7]. Hankel determinants play a valuable role
in calculating coefficient problems in the study of analytic and univalent functions. Scholars continue
to explore the characteristics and applications of Hankel determinants, providing them with a rich and
stimulating field of study in current mathematics. Because of their connections to a wide range of
mathematical fields and applications, the Hankel determinant is an important tool for both pure and
applied mathematics.

For the given parameters ı,m ∈ N, Pommerenke [8, 9] defined the Hankel determinant Hı,m( f ) for a
function f ∈ A of the form (1.1) as follows:

Hı,m( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣
ξm ξm+1 . . . ξm+ı−1

ξm+1 ξm+2 . . . ξm+ı
...

...
. . .

...

ξm+ı−1 ξm+ı−2 . . . ξm+2ı−2

∣∣∣∣∣∣∣∣∣∣∣∣ ı,m ∈ N.
AIMS Mathematics Volume 10, Issue 7, 17274–17290.
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The Hankel determinants for various orders are calculated by taking multiple values of ı and m. For
ı = 2 and m = 1, the Hankel determinant Hı,m( f ) takes the following form:

H2,1 ( f ) =

∣∣∣∣∣∣ ξ1 ξ2ξ2 ξ3

∣∣∣∣∣∣ = ξ1ξ3 − ξ2
2

The Hankel determinant H2,1 ( f ) is known as the Fekete-Szegö functional [10]. For ı = 2 and m = 2,

H2,2 ( f ) =

∣∣∣∣∣∣ ξ2 ξ3ξ3 ξ4

∣∣∣∣∣∣ = ξ2ξ4 − ξ2
3.

For ı = 3 and m = 1,

H3,1( f ) =

∣∣∣∣∣∣∣∣∣
ξ1 ξ2 ξ3
ξ2 ξ3 ξ4
ξ3 ξ4 ξ5

∣∣∣∣∣∣∣∣∣
= ξ5(ξ3 − ξ2

2) − ξ4(ξ4 − ξ2ξ3) + ξ3(ξ2ξ4 − ξ2
3).

This implies that ∣∣∣H3,1( f )
∣∣∣ ≤ |ξ5| ∣∣∣ξ3 − ξ2

2

∣∣∣ + |ξ4| |ξ4 − ξ2ξ3| + |ξ3| ∣∣∣H2,2 ( f )
∣∣∣ . (1.4)

Extensive research has been carried out to study the upper bounds of
∣∣∣H3,1( f )

∣∣∣ for various subfamilies
of analytic and univalent functions which includes the bound for Bazilevic functions by Altinkaya
and Yalcin [11], for functions related with bounded variations by Arif et al. [12], for certain locally
univalent functions by Bansal et al. [13], for strongly starlike functions by Cho et al. [14], for functions
related with lemniscate of Bernoulli by Raza and Malik [15], for functions related to booth Lemniscate
by Raza et al. [16], for functions associated with generalized Lemniscate of Bernoulli by Nawaz et
al. [17] and many others.

In recent years, researchers have increasingly turned their attention to q-calculus, a mathematical
framework that has garnered recognition for its numerous applications and significance in various
fields. This renewed focus has stimulated the exploration and definition of important and intriguing
subclasses of analytic functions, specifically within the context of q-calculus. In a short period,
multiple noteworthy achievements in this field have been presented. Engineers as well as pure
and applied mathematicians want to pursue this extended form because of its higher efficiency and
wide range of applications. The q-analogue of differential and integral operators were initially
introduced by Jackson [18,19]. His innovative approach has significantly improved our understanding
of these mathematical concepts, paving the way for further exploration in q-calculus. In [20],
Srivastava presented a comprehensive study of the q-calculus for the sake of developing a mathematical
understanding to introduce new ideas in Geometric Function Theory. Mahmood et al. [21, 22] studied
the q-analogue of starlike functions by computing certain coefficient problems. Taj et al. [23, 24]
introduced the q-versions of sine and cosine functions using the q-exponential function. In [25–27],
q-starlike functions associated with q-exponential functions and with the general conic domain are
discussed. Zhang et al. [28] studied the q-Hermite polynomials. The q-analogue of close-to-convex
functions was studied by Shi et al. [29]. Raza et al. [30] studied the q-analogue of differential
subordination associated with Lemniscate of Bernoulli. In [31–33], q-starlike functions associated
with k -Fibonacci numbers, conic domains, and Janowski functions, respectively, are discussed.

AIMS Mathematics Volume 10, Issue 7, 17274–17290.
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Quantum calculus, also known as q -calculus, is a mathematical discipline that introduces a new type of
derivative, known as the q-derivative. The q-derivative of the complex-valued function f in q-calculus
is precisely defined within the domain δ̄, as given below:

(Dq f )(z) =
{ f (z)− f (qz)

(1−q)z , z , 0,
f ′(0), z = 0,

(1.5)

where q ∈ (0, 1) . Additionally,

lim
q→1−

(Dq f )(z) = lim
q→1−

f (z) − f (qz)
(1 − q)z

= f ′ (z) ,

provided f is differentiable in δ̄. The Maclaurin series expansion for the function (Dq f ) in equation
(1.1) is given by:

(Dq f )(z) =
∞∑
τ=0

[τ]q ξτz
τ−1,

where

[τ]q =

{ 1−qτ

1−q , if τ ∈ C,∑τ−1
τ=0 qτ, if τ ∈ N.

(1.6)

For more details, see [18, 19]. There are q-analogues of the exponential functional presented in the
following form:

ϱq (z) =
∞∑
τ=0

zτ

[τ]q!
, q ∈ (0, 1) ; |z| <

1
1 − q

.

Now, we define 1 + sinq(z) as given below.

Definition 1.1. The q-version of sine functions is derived by utilizing the q-exponential function, which
can be expressed as follows:

sinq (z) =
ϱiz

q − ϱ
−iz
q

2i
and the series of 1 + sinq(z) is presented as follows:

1 + sinq(z) = 1 +
1

[1]q!
z −

1
[3]q!

z3 +
1

[5]q!
z5 −

1
[7]q!

z7 · · · . (1.7)

After briefly studying the applications of q-calculus, we come to know that the q-derivative operator
Dq plays a central role in defining and discovering abundant subclasses of analytic functions. Motivated
by the above work, we now define the class Rsinq of bounded turning functions associated with the q-
analogue of 1 + sinq(z), as given below.

Definition 1.2. A function f is said to be in the class Rsinq if it fulfills the following condition:

Dq f (z) ≺ 1 + sinq(z), z ∈ δ̄, (1.8)

that is,
Rsinq =

{
f ∈ A : Dq f (z) ≺ 1 + sinq(z), z ∈ δ̄

}
. (1.9)

The class Rsinq extends the class Rsin associated with the function 1 + sin(z) and Limq→1−Rsinq � Rsin.
The class Rsin studied by [34].

AIMS Mathematics Volume 10, Issue 7, 17274–17290.
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The main objective of this research is to study the class Rsinq by utilizing the following mentioned
lemmas, which will serve as key analytical tools to support our findings and conclusions. We are
intended to explore this class by investigating the following coefficient problems for the said class.

• The sharp coefficient bounds:
|ξn| for n = 2, 3, 4.

• The Krushkal inequality:∣∣∣ξηε − ξη(ε−1)
2

∣∣∣ ≤ 2η(ε−1) − εη, for ε = 4 and η = 1.

• The sharp upper bounds of the second-order Hankel determinant and third-order Hankel
determinant.

2. A set of lemmas

We will require the following lemmas for finding the main results.

Lemma 2.1. [2, 35] If p ∈ P is of the form (1.2) , then

2℘2 = ℘
2
1 + α(4 − ℘2

1),

4℘3 = ℘
3
1 + 2℘1(4 − ℘2

1)α − ℘1(4 − ℘2
1)α2 + 2(4 − ℘2

1)
(
1 − |α|2

)
β,

with |α| ≤ 1 and |β| ≤ 1.

Lemma 2.2. [36] If p ∈ P is of the form (1.2) where λ, α ∈ (0, 1) and

8λ (1 − λ)
[
(αβ − 2γ)2 + (α (λ + α) − β)2

]
+ α (1 − α) (β − 2λα)2

≤ 4α2 (1 − α)2 λ (1 − λ) ,

then ∣∣∣∣∣γ℘4
1 + λ℘

2
2 + 2α℘1℘3 −

3
2
β℘2

1℘2 − ℘4

∣∣∣∣∣ ≤ 2.

Lemma 2.3. [2] Let p ∈ P be of the form (1.2) . Then,

|℘n| ≤ 2 (n ∈ N) , (2.1)

∣∣∣∣∣℘2 −
ν

2
℘2

1

∣∣∣∣∣ ≤ {
2, 0 ≤ ν ≤ 2,

2 |ν − 1| , elsewhere.
(2.2)

Lemma 2.4. [2] Let p ∈ P, 0 ≤ M ≤ 1, and M (2M − 1) ≤ N ≤ M. Then,∣∣∣℘3 − 2M℘1℘2 + N℘3
1

∣∣∣ ≤ 2.

AIMS Mathematics Volume 10, Issue 7, 17274–17290.
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3. Main results

In this section, we calculate the coefficient bounds for the considered class Rsinq . Coefficient bounds
are essential for studying the growth, distortion, stability, and geometric and structural characteristics
of analytic and univalent functions.

Theorem 3.1. If the function f belongs to Rsinq and has the form (1.1), then

|ξn| ≤
1

n−1∑
i=0

qi

, (3.1)

where n = 2, 3, 4 for q ∈ (0, 1) and n = 5 for q ∈ (0.56, 1). All these results are sharp for the function
defined by

Dq𭟋(z) = 1 + sinq(zn) = 1 + z + · · · , for n = 1, 2, 3, 4. (3.2)

Proof. From (1.5) and (1.9), we can write

Dq𭟋(z) = 1 + sinq(ω (z)), z ∈ δ,

where ω(z) = p(z)−1
1+p(z) . If the function p(z) is in the form described by (1.2) , then

ω(z) =
℘1z + ℘2z2 + ℘3z3 + . . .

2 + ℘1z + ℘2z2 + ℘3z3 + . . .
.

Now consider

1 + sinq(ω (z)) = 1 + sinq

(
℘1z + ℘2z2 + ℘3z3 + . . .

2 + ℘1z + ℘2z2 + ℘3z3 + . . .

)
, (3.3)

we have

1 + sinq(ω (z)) = 1 +
℘1

2 [1]q!
z +

(
2℘2 − ℘

2
1

4 [1]q!

)
z2 + · · · . (3.4)

Now, consider

Dq f (z) = 1 +
−ξ2q2 + ξ2

1 − q
z +
−ξ3q3 + ξ3

1 − q
z2 +
−ξ4q4 + ξ4

1 − q
z3 + · · · . (3.5)

Using (3.4) and (3.5) , we can compute the coefficients of z, z2, z3, and z4 and obtain

ξ2 =
℘1

2 (1 + q)
, (3.6)

ξ3 =
2℘2 − ℘

2
1

4
∑2

i=0 qi
, (3.7)

ξ4 =

(
4 [3]q!℘3 − 4 [3]q!℘1℘2 +

(
−1 + [3]q!

)
℘3

1

)
8 [3]q!

∑3
i=0 qi

, (3.8)

and

ξ5 =
6
(
−1 + [3]q!

)
℘2

1℘2 +
(
3 − [3]q!

)
℘4

1 − 8 [3]q!℘1℘3 + 8 [3]q!℘4 − 4 [3]q!℘2
2

16 [3]q!
4∑

k=0
qk

. (3.9)

AIMS Mathematics Volume 10, Issue 7, 17274–17290.
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Applying Lemma 2.3 in (3.6) , we get

|ξ2| ≤
1

1 + q
,

and we can write
|ξ2| ≤

1
1∑

k=0
qk

.

Now, consider

ξ3 =
2℘2 − ℘

2
1

4
∑3

i=0 qi
,

and we can write

ξ3 =
1

2
∑3

i=0 qi

[
℘2 −

℘2
1

2

]
.

Using Lemma 2.3 in (3.7) , we get

|ξ3| ≤
1∑2

i=0 qi
. (3.10)

Now, consider

ξ4 =

(
4 [3]q!℘3 − 4 [3]q!℘1℘2 +

(
−1 + [3]q!

)
℘3

1

)
8 [3]q!

(
1 + q + q2 + q3) .

As [3]q! = (1 + q)
(
1 + q + q2

)
, we may write

ξ4 =

(
4q3 + 8q2 + 8q + 4

)
8 [3]q!

(
1 + q + q2 + q3)

℘3 − ℘1℘2 +

(
q3 + 2q2 + 2q

)(
4q3 + 8q2 + 8q + 4

)℘3
1


=

4 (q + 1)
(
q + q2 + 1

)
8 (1 + q)

(
1 + q + q2) (1 + q + q2 + q3)

℘3 − ℘1℘2 +

(
q3 + 2q2 + 2q

)(
4q3 + 8q2 + 8q + 4

)℘3
1


=

1
2
(
1 + q + q2 + q3)

℘3 − ℘1℘2 +

(
q3 + 2q2 + 2q

)(
4q3 + 8q2 + 8q + 4

)℘3
1

 .
Now applying Lemma 2.4, we get M = 1

2 and N = (q3+2q2+2q)
(4q3+8q2+8q+4) . It is clearly seen that 0 < M < 1 and

N < M for q ∈ (0, 1) . Further, M (2M − 1) − N < 0 for q ∈ (0, 1) .Therefore, by Lemma 2.4, we have

|ξ4| ≤
1(

1 + q + q2 + q3) . (3.11)

Now, take

ξ5 =
6
(
−1 + [3]q!

)
℘2

1℘2 +
(
3 − [3]q!

)
℘4

1 − 8 [3]q!℘1℘3 + 8 [3]q!℘4 − 4 [3]q!℘2
2

16
(
q4 + q3 + q2 + q + 1

)
[3]q!

.

Putting the value of [3]q! = (1 + q)
(
1 + q + q2

)
, we have

ξ5 =
1

2
(
q4 + q3 + q2 + q + 1

) [
−q3 − 2q2 − 2q + 2

8 (1 + q)
(
1 + q + q2)℘4

1 +
1
2
℘2

2 + ℘1℘3

AIMS Mathematics Volume 10, Issue 7, 17274–17290.
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−
3
2

q3 + 2q2 + 2q
2 (1 + q)

(
1 + q + q2)℘2

1℘2 − ℘4

]
.

After comparing with Lemma 2.2, we get

γ =
−q3 − 2q2 − 2q + 2

8 (1 + q)
(
1 + q + q2) , λ = 1

2
, α =

1
2
, β =

q3 + 2q2 + 2q
2 (1 + q)

(
1 + q + q2) .

Clearly, 0 < λ < 1 and 0 < α < 1 . Also, consider

8λ (1 − λ)
[
(αβ − 2γ)2 + (α (λ + α) − n1)2

]
+ α (1 − α) (β − 2λα)2

− 4α2 (1 − α)2 λ (1 − λ) = Ψ (q) ,

where

Ψ (q) = −
2q6 + 8q5 + 16q4 + 20q3 + 16q2 + 8q − 15

16
(
q3 + 2q2 + 2q + 1

)2 .

After some simple calculations, we can see that Ψ (q) ≤ 0, for all q ∈ (0.56, 1) . By using Lemma 2.2,
we obtain

|ξ5| ≤
1(

q4 + q3 + q2 + q + 1
) , for q ∈ (0.56, 1) . (3.12)

□

Upon letting q → 1−, the upper bounds |ξ2|, |ξ3|, and |ξ4| reduce to the following, proved in [34].
Moreover, the upper bound for |ξ5| is significantly improved compared to the one proved in [34].

Corollary 3.2. If the function f belongs to Rsin and has the form (1.1), then

|ξ2| ≤
1
2
,

|ξ3| ≤
1
3
,

|ξ4| ≤
1
4
,

and
|ξ5| ≤

1
5
.

4. Krushkal inequality

The Krushkal inequality comes up when studying Teichmüller spaces and quasi-conformal
mappings. It frequently appears in the analysis of extremal problems regarding geometric function
theory, function theory, and conformal invariants. Krushkal proposed and verified this inequality for
every class of univalent functions in [37].

According to the Krushkal inequality, each f ∈ S having the form (1.1) satisfies the following sharp
inequality. ∣∣∣ξηε − ξη(ε−1)

2

∣∣∣ ≤ 2η(ε−1)
− εη, ε > 3, η ≥ 1. (4.1)

The next result examines the inequality (4.1) for ε = 4 and η = 1, reducing it to
∣∣∣ξ4 − ξ3

2

∣∣∣ ≤ 4. We
encourage viewers to review [38, 39] for a few current studies on the Kruskal inequality.

AIMS Mathematics Volume 10, Issue 7, 17274–17290.
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Theorem 4.1. If the function f belongs to Rsinq and has the form (1.1), then

∣∣∣ξ4 − ξ3
2

∣∣∣ ≤ 1(
1 + q + q2 + q3) , q ∈ (0.44, 1) .

The result is sharp for the function defined in (3.2) , for n = 4.

Proof. From (3.6) and (3.8) , we have

ξ4 − ξ
3
2 =

(
4 [3]q!℘3 − 4 [3]q!℘1℘2 +

(
−1 + [3]q!

)
℘3

1

)
8
(
[3]q!

)∑3
i=0 qi

−

(
℘1

2 (1 + q)

)3

.

Putting the value of [3]q! = (1 + q)
(
1 + q + q2

)
, after simplification we can write

ξ4 − ξ
3
2 =

1
2
(
1 + q + q2 + q3) (

℘3 − ℘1℘2 +
q + 2q2 + 2q3 − 1

4 (q + 1)2 (
q + q2 + 1

)℘3
1

)
.

Now applying Lemma 2.4, we get M = 1
2 and N = − q+2q2+2q3−1

4(q+1)2(q+q2+1) . It is clearly seen that 0 < M < 1
and N < M for q ∈ (0, 1) . Further, M (2M − 1) − N < 0 for q ∈ (0.44, 1) . So, we can write∣∣∣ξ4 − ξ3

2

∣∣∣ ≤ 1(
1 + q + q2 + q3) , q ∈ (0.44, 1) .

□

Theorem 4.2. If the function f belongs to Rsinq and has the form (1.1), then

|ξ4 − ξ2ξ3| ≤
1∑3

j=0 q j
. (4.2)

The result is sharp for the function defined in (3.2) , for n = 4.

Proof. From (3.6)− (3.8), we get

ξ4 − ξ2ξ3 =
1

8
(
[3]q!

)2 (
1 + q2)

4 [3]q!
2∑

j=0

q j℘3 − 2 [3]q!
(
3q2 + 2q + 3

)
℘1℘2

+

[3]q!
(
2 + q + 2q2

)
−

2∑
j=0

q j

℘3
1


:= 𭟋q (℘, x) .

Utilizing Lemma 2.1, we get

𭟋q (℘, x) =
1

8
(
[3]q!

)2 (
1 + q2)

−℘1 |x|2
(
4 − ℘2

1

)
[3]q!

2∑
j=0

q j −
(
q2 + 1

)
[3]q!℘1 |x|

(
4 − ℘2

1

)
AIMS Mathematics Volume 10, Issue 7, 17274–17290.
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−

2∑
j=0

q j℘3
1 + 2 [3]q!

(
4 − ℘2

1

) (
1 − |x|2

)
|β|

2∑
j=0

q j

 ,
Apply the triangular inequality and assume that |x| = x ∈ (0, 1), c ∈ (0, 2), and |β| ≤ 1. After reducing,
we obtain

𭟋q (℘, x) =
1

8
(
[3]q!

)2 (
1 + q2)

℘1x2
(
4 − ℘2

1

)
[3]q!

2∑
j=0

q j℘3 +
(
q2 + 1

)
[3]q!℘1x

(
4 − ℘2

1

)
+

2∑
j=0

q j℘3
1 + 2 [3]q!

(
4 − ℘2

1

) 2∑
j=0

q j

 .
Partially differentiating with respect to x, we get

∂𭟋q (℘, x)
∂x

=
1

8
(
[3]q!

)2 (
1 + q2)

2℘1x
(
4 − ℘2

1

)
[3]q!

2∑
j=0

q j +
(
q2 + 1

)
[3]q!℘1

(
4 − ℘2

1

) .
We can observe that ∂𭟋q

∂x > 0 and x ∈ [0, 1]. Therefore, when x = 1, the function 𭟋q (℘, x) reaches its
maximum value, as shown by

𭟋q (℘, 1) =
1

8
(
[3]q!

)2 (
1 + q2)

℘1

(
4 − ℘2

1

)
[3]q!

2∑
j=0

q j +
(
q2 + 1

)
[3]q!℘1

(
4 − ℘2

1

)
+

2∑
j=0

q j℘3
1 + 2 [3]q!

(
4 − ℘2

1

) 2∑
j=0

q j

 := G (℘) .

Partial differentiating w.r.t ℘, after reducing, we get

G
′

(℘) =
1

8
(
[3]q!

)2 (
1 + q2)

℘2

3 2∑
j=0

q j − 3 [3]q

(
2 + q + 2q2

) + 2 [3]q!
(
2 + q + 2q2

)
− 4 [3]q!℘

2∑
j=0

q j

 .
We concluded that G

′ (℘) < 0, and then G (℘) achieved its maximum value at ℘ = 0, where we have

G (0) =
1

(1 + q)
(
1 + q2) .

After reducing, we get

|ξ4 − ξ2ξ3| ≤
1∑3

j=0 q j
.

□
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We determined that the following bounds are significantly better than the one demonstrated in [34]
by taking q→ 1− in the previous expression.

Corollary 4.3. If the function f belongs to Rsin and has the series form (1.1) , then

|ξ4 − ξ2ξ3| ≤
1
4
.

5. Hankel determinants

Theorem 5.1. If the function f belongs to Rsinq and has the series form as it is appeared in (1.1) , then

|H2,1 ( f ) | =
∣∣∣ξ3 − ξ2

2

∣∣∣ ≤ 1(
q2 + q + 1

) , for q ∈ (0, 1) . (5.1)

The outcome is sharp for the function defined in (3.2) , for n = 3.

Proof. Using (3.6) and (3.7), we have

ξ3 − ξ
2
2 =

1
2
(
q2 + q + 1

) (
℘2 −

2q2 + 3q + 2
2 (q + 1)2 ℘

2
1

)
.

Clearly, 0 < 2q2+3q+2
2(q+1)2 ≤ 1, for q ∈ (0, 1) , so applying Lemma 2.3, we have

∣∣∣ξ3 − ξ2
2

∣∣∣ ≤ 1(
q2 + q + 1

) .
□

We concluded the following result showed in [34] by taking q→ 1− in the previous expression.

Corollary 5.2. If the function f belongs to Rsin and has form (1.1), then∣∣∣ξ3 − ξ2
2

∣∣∣ ≤ 1
3
.

Theorem 5.3. If the function f belongs to Rsinq and has form (1.1), then

|H2,2 ( f ) | ≤
1(∑2

j=0 q j
)2 , (5.2)

where H2,2 ( f ) = ξ2ξ4 − ξ2
3. The outcome is sharp for the function defined in (3.2) , for n = 3.

Proof. From (3.6) − (3.8) , we have

H2,2 ( f ) =
1

16
(
[3]q!

) (
[4]q!

) (∑3
j=0 q j

)2

[(
−1 − 2q + [3]q!q2 − 3q2 − 2q3 − q4

)
℘4

1 − 4 [3]q!q2℘2
1℘2

+4 [3]q!℘1℘3

(
1 + 2q + 3q2 + 2q3 + q4

)
− 4 [3]q!℘2

2

(
1 + 2q + 2q2 + 2q3 + q4

)]
.
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For the convenience of notation, ℘1 := ℘ ∈ [0, 2] . By utilizing Lemma 2.1 and simplifying the
expression, we get

H2,2 ( f ) =
1

16 [3]q! [4]q!
(∑2l

j=0 q j
)2

[
−

(
1 + 2q + 2q2 + 2q3 + q4

)
[3]q!t2x2

−
(
1 + 2q + 3q2 + 2q3 + q4

)
℘4 − [3]q!℘2tx2

(
1 + 2q + 3q2 + 2q3 + q4

)
+2 [3]q!℘

(
1 − |x|2

)
|β| t

(
1 + 2q + 3q2 + 2q3 + q4

)]
.

Let t be defined as (4−℘2). To apply the modulus, we can utilize the triangle inequality along with the
conditions where |x| = x and |β| ≤ 1.

α1 =
∣∣∣∣− (

1 + 2q + 2q2 + 2q3 + q4
)

[3]q!
∣∣∣∣ = (

1 + 2q + 2q2 + 2q3 + q4
)

[3]q! > 0,

α2 =
∣∣∣∣− (

1 + 2q + 3q2 + 2q3 + q4
)∣∣∣∣ = (

1 + 2q + 3q2 + 2q3 + q4
)
> 0,

α3 =
∣∣∣∣− [3]q!

(
1 + 2q + 3q2 + 2q3 + q4

)∣∣∣∣ = [3]q!
(
1 + 2q + 3q2 + 2q3 + q4

)
> 0,

α4 =
∣∣∣∣2 [3]q!

(
1 + 2q + 3q2 + 2q3 + q4

)∣∣∣∣ = 2 [3]q!
(
1 + 2q + 3q2 + 2q3 + q4

)
> 0.

Thus, we get

H2,2 ( f ) =
1

16 [3]q! [4]q!
(∑2

j=0 q j
)2

[
α1t2x2 + α2℘

4 + α3℘
2tx2 + α4℘t

(
1 − x2

)]
:= L (℘, x) . (5.3)

Assume that the upper bound for the function L (℘, x) is defined within the interior of the rectangle
[0, 2] × [0, 1]. Differentiating (5.3) with respect to x, we have

∂L
∂x
=

1

16 [3]q! [4]q!
(∑2

j=0 q j
)2

[
2α1t2x + 2α3℘

2tx − 2α4℘tx
]

=
t

16 [3]q! [4]q!
(∑2

j=0 q j
)2

[
2α1tx + 2α3℘

2x − 2α4℘x
]
,

where t := (4 − ℘2). Setting ∂L
∂x = 0 implies either ℘ = 2 or 2α1(4 − ℘2)x + 2α3℘

2x − 2α4℘x = 0.
The points (℘, x) that satisfy these conditions are not interior points of the rectangle [0, 2] × [0, 1]. The
function L(℘, x) cannot attain its maximum value within the interior of the rectangle. Therefore, the
maximum value must occur at the boundary of the rectangle. For this, We will examine the following
cases:

When ℘ = 0, we have

L (0, x) =

(
1 + 2q + 2q2 + 2q3 + q4

)
x2

[4]q!
(∑2

j=0 q j
)2 ,

max L (0, x) = L (0, 1) =
1(∑2

j=0 q j
)2 .
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Suppose ℘ = 2, and we get

L (2, x) =
1

[3]q! [4]q!
.

Suppose x = 0, and we get

L (℘, 0) =
1

16 [3]q! [4]q!
(∑2

j=0 q j
)2

[
α2℘

4 + α4℘t
]

:= g (℘) .

Taking partial differentiating w.r.t. ℘, after simplifying, we get

g
′

(℘) =
1

16 [3]q! [4]q!
(∑2

j=0 q j
)2

[
4α2℘

3 + 2α4℘
2
]
.

As we can see, g
′

(℘) > 0, ℘ ∈ [0, 2] and g is an increasing function that reaches its maximum value at
℘ = 2. After simplifying, and get

g(℘) ≤ g(2) =
1

[3]q! [4]q!
.

Suppose x = 1, and we get

L (℘, 1) =
1

16 [3]q! [4]q!
(∑2

j=0 q j
)2

[
α1

(
4 − ℘2

)2
+ α2℘

4 + α3℘
2
(
4 − ℘2

)]
:= g1 (℘) ,

as g′1 (0) = 0, and

g
′′

1 (0) =
−1

2
(∑2

j=0 q j
)2 < 0,

so

max L (℘, 1) = g1 (0) =
16α1

16 [3]q! [4]q!
(∑2

j=0 q j
)2

=

(
1 + 2q + 2q2 + 2q3 + q4

)
[4]q!

(∑2
j=0 q j

)2 .

Consequently, we obtain

|H2,2 ( f ) | ≤

(
1 + 2q + 2q2 + 2q3 + q4

)
[4]q!

(∑2
j=0 q j

)2 .

As [4]q! = (1 + q)
(
1 + q + q2 + q3

)
, after simplification, we have

|H2,2 ( f ) | ≤
1(∑2

j=0 q j
)2 .

□
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We determined that the following bounds are significantly better than the one calculated in [34] by
taking q→ 1− in the previous expression.

Corollary 5.4. If the function f belongs to Rsin and has form (1.1), then

|H2,2 ( f ) | ≤
1
9
.

Theorem 5.5. If f ∈ Rsin has the form as (1.1) , then∣∣∣H3,1( f )
∣∣∣ ≤ Q(

1 + q + q2)3 (
1 + q + q2 + q3)2 (

1 + q + q2 + q3 + q4) . (5.4)

with Q = 4q10 + 15q9 + 36q8 + 63q7 + 86q6 + 95q5 + 86q4 + 63q3 + 36q2 + 15q + 4.

Proof. Thus, we use the fact that a1 = 1, together with (3.10), (3.11), (3.12), (4.2), (5.1), and (5.2) in

(1.4). □

We arrive at the conclusion that the following bound is significantly better than the one demonstrated
in [34] by taking q→ 1−1 in (5.4).

Corollary 5.6. If f ∈ Rsin has the form as (1.1) , then

|H3,1( f )| ≤ 0.23287.

6. Conclusions

Recently, the basic concepts of q-calculus have attracted the attention of numerous mathematicians
due to its extensive applications in both mathematics and physics. We were primarily motivated to
conduct the current investigations by the existing research in this field of study, in this contex we
introduced a new subclass denoted by Rsinq of analytic functions. This subclass is associated with
the q-analogue of the sine function through a subordination relation. We computed the coefficient
bounds and solved the Fekete-Szegö problem for this subclass. Furthermore, we derived the Krushkal
inequality and determined the third Hankel function. This study presents sharp results regarding the
coefficients, Hankel determinants, and the Kruskal inequality, specifically for the defined class Rsinq .
Additionally, the specified class Rsinq can be further examined for future study in order to determine the
upper bounds of higher-order Hankel determinants. New directions for research in GFT and related
domains can be valuable for future study, possibly as a consequence of our work.
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