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1. Introduction

Robust stability of dynamic systems is a significant problem in control theory, which has been
extensively studied for several kinds of dynamic systems in the past few decades [1–3]. Robust stability
has wide applications in various fields such as the power system and coordinating networks [4, 5].
Particularly, in gene regulation, mutations in certain key genes may lead to the occurrence of cancer [6].
Therefore, it is meaningful to investigate the robust stability of gene regulatory networks with
mutations.

Boolean networks (BNs), a kind of dynamic system, were first put forward in [7] to depict
gene regulatory networks. In recent years, several new methods have been proposed to reduce the
computational complexity of studying BNs. The deep reinforcement learning method was used to
deal with the stabilization of large-scale probabilistic BNs [8]. Based on the dependence digraph and
feedback arc set, a pinning control scheme was proposed to explore the non-oscillation of large-scale
asynchronous BNs [9]. In reality, however, many dynamic evolutionary processes in gene regulation
are controlled by different modes [10]. Therefore, the model of switched Boolean networks (SBNs)
was proposed in [11] to describe different modes in gene regulatory networks. In order to depict
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the gene mutations, the concept of function perturbation was established in the model of BNs [12],
including one-bit function perturbation and multi-bit function perturbation. The robust stability of BNs
subject to multi-bit stochastic function perturbations was studied in [13], and the robust set stability of
implicit BNs with a time delay and one-bit function perturbation was investigated in [14].

The semi-tensor product (STP) of matrices [15] is a useful tool for the study of BNs and SBNs.
Under the framework of STP, the robust stability of BNs with external disturbances was explored
in [16–19]. Using STP, some basic issues of SBNs were well addressed, including stability and
global stability [11,20], synchronization [21,22], stabilization [23], and output tracking [24]. The STP
method is also used to discuss the impact of function perturbations on BNs such as robust stability [25],
stabilization [26], set controllability [27], cluster synchronization [28], and topological structure [29].
In [25], pointwise stabilizability and consistent stabilizability of SBNs with function perturbation were
investigated. Besides, the influence of one-bit function perturbation on SBNs was considered in [30].

Intracellular molecular activities are considerably influenced by thermal fluctuations and noisy
process, but cellular functions are generally robust to these external disturbances [31]. Moreover,
gene mutations described as function perturbations can lead to some diseases such as cancer
and diabetes [12]. When both external disturbances and function perturbation affect a BN, the
robust stability becomes more challenging [32]. The set stability of SBNs (BNs with disturbances
can be regarded as SBNs) [33] and the disturbance decoupling controller design of SBNs with
disturbances [34] were studied, and the robust stability of SBNs subject to perturbation was investigated
in [25, 30]. However, there exist few studies on SBNs subject to both external disturbances and
function perturbations. Based on the above motivations, we investigate the influence of one-bit function
perturbation on SBNs with external disturbances via constructing the reachable sets of a perturbed state.
Compared with [25], which used the reachable matrix of SBNs after perturbation, we just employ the
information of a perturbed state to derive a necessary and sufficient condition for the robust stability of
disturbed SBNs with function perturbation, which needs less information about the perturbed system.
Furthermore, the new criterion can degenerate into the results of [30, 32] when the considered SBN is
just affected by function perturbation or only has one mode.

The rest of this article is structured as follows. Section 2 presents the problem formulation.
The robust stability criterion of disturbed SBNs subject to one-bit function perturbation is given in
Section 3. A concluding summary is provided in Section 4.

Notations: N and Z+ denote the sets of natural numbers and positive numbers, respectively. Given
α, β ∈ N and α < β, denote [α : β] := {α, α + 1, · · · , β}. D := {0, 1} and Dn := D× · · · × D︸         ︷︷         ︸

n

. Ai, j

represents the element in the i-th row and the j-th column of matrix A. Blki(A) denotes the i-th equal
block of an m × mn matrix A, where i ∈ [1 : n]. Coli(A) denotes the i-th column of matrix A. Row j(A)
represents the j-th row of matrix A. ∆n := {δ1

n, · · · , δ
n
n} and ∆2 := ∆, where δi

n = Coli(In), ∀ i ∈ [1 : n],
and In represents the n-dimensional identity matrix. If L = [δi1

m δ
i2
m · · · δ

in
m], then the m × n matrix L

is called a logical matrix. For simplicity, [δi1
m δ

i2
m · · · δ

in
m] is briefly expressed as δm[i1 i2 · · · in]. “⋉”

denotes the STP of matrices, which is omitted without causing confusion. For s× t matrix A and p× q
matrix B, denote A ⋉ B = (A ⊗ Ir/t)(B ⊗ Ir/p), where r is the least common multiple of t and p.
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2. Problem formulation

Normally, an SBN with n nodes, ω switching signals, and q disturbance inputs is described as
x1(t + 1) = f σ(t)

1 (X(t),Ξ(t)),
x2(t + 1) = f σ(t)

2 (X(t),Ξ(t)),
...

xn(t + 1) = f σ(t)
n (X(t),Ξ(t)),

(2.1)

where X(t) = (x1(t), x2(t), · · · , xn(t)) ∈ Dn is the state vector, Ξ(t) = (ξ1(t), ξ2(t), · · · , ξq(t)) ∈ Dq is the
disturbance input vector, σ : N → [1 : ω] is the switching signal, and f l

i : Dn+q → D, i ∈ [1 : n], l ∈
[1 : ω] are Boolean functions. {Ξ(t) : t ∈ N} ⊆ Dq and {Σ(t) : t ∈ N} ⊆ [1 : ω] are a sequence of
disturbance inputs and a switching sequence, respectively, under which we denote the state trajectory
of system (2.1) starting from an initial state X(0) ∈ Dn by X(t; X(0),Σ,Ξ).

The definition of robust stability for system (2.1) is given below.

Definition 2.1. System (2.1) is said to be robustly stable at Xe = (xe, xe, · · · , xe) ∈ Dn under an
arbitrary switching signal, if there exists a positive integer T such that X(t; X(0),Σ,Ξ) = Xe holds for
any X(0) ∈ Dn, any {Σ(t) : t ∈ N} ⊆ [1 : ω], any {Ξ(t) : t ∈ N} ⊆ Dq, and any integer t ≥ T.

The STP of matrices is the main research tool in this paper and its definition is given in notations.
For the specific properties of the STP of matrices, please refer to [15].

Using the STP, we can convert X(t), σ(t) = i, and Ξ(t) into the equivalent vectors x(t) = ⋉n
i=1xi(t),

σ(t) = δi
ω, i ∈ [1 : ω], and ξ(t) = ⋉q

j=1ξ j(t), respectively. Then, system (2.1) is expressed as the
following equivalent algebraic form:

x(t + 1) = Lσ(t)ξ(t)x(t), (2.2)

where L = δ2n[ν1 ν2 · · · νω2n+q] ∈ L2n×ω2n+q is the state transition matrix. L can be divided into ω2q equal
parts by column. We denote Blki(L) = Li, where Li = δ2n[βi

1 β
i
2 · · · β

i
2n] and i ∈ [1 : ω2q]. Additionally,

M =
∑ω2q

i=1 Li is a one-step reachable matrix.
When converting an SBN into the equivalent algebraic form (2.2), the function perturbation is

depicted by the change of some columns in the state transition matrix [26]. Thus, we present the
following assumptions about the considered system and the type of function perturbation throughout
the article.

Assumption 2.1. System (2.2) is robustly stable at xe = δ
θ
2n under an arbitrary switching signal.

Assumption 2.2. After one-bit function perturbation, the ζ-th column of L is changed and the other
columns do not change. Specifically, assume that L changes to L̃ = δ2n[ρ1 ρ2 · · · ρω2n+q] after one-bit
function perturbation. Then, Colζ(L̃) = δρζ2n , δ

νζ
2n = Colζ(L) and Coli(L̃) = Coli(L), where i ∈ [1 :

ω2n+q] \ {ζ}.

Remark 2.1. Similar to L, L̃ can be divided into ω2q equal parts by column. We denote L̃i =

δ2n[γi
1 γ

i
2 · · · γ

i
2n], where i ∈ [1 : ω2q]. For the above-mentioned integer ζ, there exist unique integers

ι ∈ [1 : ω], κ ∈ [1 : 2q], and µ ∈ [1 : 2n] satisfying ζ = (ι−1)2q+n+(κ−1)2n+µ = [(ι−1)2q+(κ−1)]2n+µ,
which means that there exists unique integer p = (ι − 1)2q + κ ∈ [1 : ω2q] such that ζ = (p − 1)2n + µ.
Thus, only the µ-th column of the p-th block in state transition matrix L changes.

We summarize the above analysis as the following assumption.
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Assumption 2.3. For system (2.2), Colµ(L̃p) = δγ
p
µ

2n , δ
β

p
µ

2n = Colµ(Lp), Coli(L̃p) = Coli(Lp) is satisfied
for any integer i ∈ [1 : 2n] \ {µ}, and L̃ j = L j holds for any integer j ∈ [1 : ω2q] \ {p}.

Under Assumption 2.2, system (2.2) becomes

x̃(t + 1) = L̃σ̃(t)̃ξ(t)x̃(t). (2.3)

Here, x̃(t) = ⋉n
i=1 x̃i(t) ∈ ∆2n , L̃ ∈ L2n×ω2n+q , σ̃(t) ∈ ∆ω, and ξ̃(t) ∈ ∆2q are the state variable, state

transition matrix, switching signal, and disturbance input of system (2.2) subject to perturbation
in Assumption 2.2, respectively. Note that σ̃(t) = σ(t) and ξ̃(t) = ξ(t) hold for any t ∈ N.
Correspondingly, M̃ =

∑ω2q

i=1 Li − Lp + L̃p is the one-step reachable matrix of system (2.3).
The purpose of this article is to study the impact of one-bit function perturbation in Assumption 2.2

on the robust stability of SBNs.

3. Main results

In this section, we propose some criteria to determine the robust stability of SBNs subject to external
disturbances and one-bit function perturbation. We first construct a series of reachable sets of δµ2n . Then,
we explore the relation of reachable sets of δµ2n before and after one-bit function perturbation.

First of all, we present two necessary conditions for the robust stability of SBNs.

Proposition 3.1. Under Assumptions 2.1–2.3, if system (2.3) is still robustly stable at xe = δ
θ
2n , then

µ , θ holds.

Proof. Suppose that µ = θ. According to Assumption 2.1, we know δβ
p
θ

2n = δθ2n . Then we have L̃διωδ
κ
2n xe =

L̃pxe = L̃pδ
θ
2n = δ

γ
p
θ

2n , δ
β

p
θ

2n = δθ2n . It indicates that xe is not the fixed point of L̃p. Therefore, x(t + 1) =
L̃px(t) is not stable at xe, which contradicts the condition that system (2.3) is robustly stable at xe. Thus,
µ , θ holds.

Proposition 3.2. Under Assumptions 2.1–2.3, if system (2.3) is still robustly stable at xe = δ
θ
2n , then

γ
p
µ , µ holds.

Proof. Suppose that γp
µ = µ. For any integer k ∈ Z+, one derives (L̃διωδ

κ
2n)kδ

µ
2n = (L̃p)kδ

µ
2n = δ

γ
p
µ

2n = δ
µ
2n

for system (2.3). However, we conclude µ , θ from Proposition 3.1. Hence, (L̃διωδ
κ
2n)kδ

µ
2n = δ

µ
2n , which

contradicts the condition that system (2.3) is robustly stable at xe. Therefore, we obtain γp
µ , µ.

It follows that γp
µ , µ and µ , θ are necessary conditions for the robust stability of system (2.2) with

external disturbances and one-bit function perturbation. As a result, we naturally assume that γp
µ , µ

and µ , θ hold in this context.
We use m1,m2, · · · ,m2n and m̃1, m̃2, · · · , m̃2n to represent the column vectors of M and M̃,

respectively. Then, M := [m1 m2 · · ·m2n] and M̃ := [m̃1 m̃2 · · · m̃2n]. The following lemma reveals
the relation between m j and m̃ j, j ∈ [1 : 2n].

Lemma 3.1. Under Assumptions 2.2 and 2.3, it holds that

m̃ j =

 m j, j ∈ [1 : 2n] \ {µ},

m j − δ
β

p
µ

2n + δ
γ

p
µ

2n , j = µ.
(3.1)
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Proof. According to Assumptions 2.2 and 2.3, m̃ j =
∑ω2q

i=1 Col j(L̃i) =
∑ω2q

i=1 Col j(Li) = m j, ∀ j ∈ [1 :
2n] \ {µ} is apparently established. Because

M =

ω2q∑
i=1

Li =

ω2q∑
i=1

δ2n[βi
1 β

i
2 · · · β

i
2n]

= [
ω2q∑
i=1

δ
βi

1
2n

ω2q∑
i=1

δ
βi

2
2n · · ·

ω2q∑
i=1

δ
βi

2n

2n ]

= [m1 m2 · · ·m2n]

and

M̃ =

ω2q∑
i=1

Li − Lp + L̃p

= [
ω2q∑
i=1

δ
βi

1
2n − δ

β
p
1

2n + δ
γ

p
1

2n

ω2q∑
i=1

δ
βi

2
2n − δ

β
p
2

2n + δ
γ

p
2

2n · · ·

ω2q∑
i=1

δ
βi

2n

2n − δ
β

p
2n

2n + δ
γ

p
2n

2n ]

= [m̃1 m̃2 · · · m̃2n],

it holds that m̃µ =
∑ω2q

i=1 δ
βi
µ

2n − δ
β

p
µ

2n + δ
γ

p
µ

2n = mµ − δ
β

p
µ

2n + δ
γ

p
µ

2n .
In order to investigate the robust stability of system (2.3), we construct a sequence of reachable sets

of δµ2n before and after one-bit function perturbation below:

Ek(µ) := { j : (Mk)µ, j > 0}, k ∈ Z+, E0(µ) := {µ}, (3.2)

Ẽk(µ) := { j : (M̃k)µ, j > 0}, k ∈ Z+, Ẽ0(µ) := {µ}. (3.3)

The influence of perturbation on the states which reach δµ2n can be analyzed by comparing the elements
in the above sets. The elements contained in Ek(µ) and Ẽk(µ) are the states that can reach δµ2n under
an arbitrary switching signal before and after perturbation, respectively. Then, through the above
reachable sets, we explore whether the states that can reach δµ2n are affected by the one-bit function
perturbation.

Lemma 3.2. Under Assumptions 2.1–2.3, if system (2.3) is robustly stable at xe, then

2n⋃
k=0

Ek(µ) =
2n⋃

k=0

Ẽk(µ).

Proof. One concludes that (Mk)µ,µ = (M̃k)µ,µ = 0 is satisfied for any integer k ∈ Z+ because
systems (2.2) and (2.3) are robustly stable at xe. Then, in the light of Assumption 2.1 and
Proposition 3.2, we know that βp

µ , µ and γp
µ , µ hold, which together with Lemma 3.1 imply that

(M̃)µ, j = Mµ, j, ∀ j ∈ [1 : 2n]. (3.4)

We prove that (M̃k)µ, j = (Mk)µ, j holds for any integer k ∈ Z+ and any integer j ∈ [1 : 2n] \ {µ} by
induction.
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According to (3.4), the conclusion is clearly true when k = 1. When k = s ∈ Z+, assume that
(M̃s)µ, j = (Ms)µ, j is true for any j ∈ [1 : 2n] \ {µ}. For any integer j ∈ [1 : 2n] \ {µ}, one obtains from
Lemma 3.1 that M̃l, j = Ml, j, ∀ l ∈ [1 : 2n]. Then,

(M̃s+1)µ, j =
2n∑
i=1

(M̃s)µ,iM̃i, j =
∑
i,µ

(Ms)µ,iMi, j + (M̃s)µ,µM̃µ, j

=
∑
i,µ

(Ms)µ,iMi, j + 0 × Mµ, j

=
∑
i,µ

(Ms)µ,iMi, j + (Ms)µ,µMµ, j = (Ms+1)µ, j.

Therefore, (M̃k)µ, j > 0 is equivalent to (Mk)µ, j > 0, ∀ j ∈ [1 : 2n] \ {µ}, ∀ k ∈ Z+. Then, based on (3.2)
and (3.3), the conclusion follows.

Instead of calculating Rowθ(M̃k), k ∈ [1 : 2n], directly, Lemma 3.2 can aid us to explore the robust
stability of system (2.3) by employing the information of system (2.2) and function perturbation.

Theorem 3.1. Under Assumptions 2.2 and 2.3, if η ∈ [1 : 2n] satisfies η <
⋃2n

k=0 Ek(µ), then η <⋃2n

k=0 Ẽk(µ).
Proof. We prove the conclusion by a reduction to absurdity. Suppose η ∈

⋃2n

k=0 Ẽk(µ). Then, we have
η ∈ [

⋃2n

k=0 Ẽk(µ)] \ {µ} or η = µ. Note that η = µ contradicts η <
⋃2n

k=0 Ek(µ). Hence, we assume that
there exists a minimum integer k∗ ∈ [1 : 2n] satisfying (M̃k∗)µ,η > 0 based on η ∈ [

⋃2n

k=0 Ẽk(µ)] \ {µ}.
Then, there exists a sequence of switching signals σ̃(0) = σ(0), σ̃(1) = σ(1), · · · , σ̃(k∗−1) = σ(k∗−1)
and a sequence of disturbance inputs ξ̃(0) = ξ(0), ξ̃(1) = ξ(1), · · · , ξ̃(k∗ − 1) = ξ(k∗ − 1) satisfying

[⋉0
l=k∗−1L̃σ̃(l)̃ξ(l)]δη2n = δ

µ
2n . (3.5)

Next, we prove that

[⋉0
l=kLσ(l)ξ(l)]δη2n = [⋉0

l=kL̃σ̃(l)̃ξ(l)]δη2n , ∀ k ∈ [0 : k∗ − 1] (3.6)

holds by induction. When k = 0, we derive from Assumptions 2.2 and 2.3, the minimality of k∗, and
η , µ that L̃σ̃(0)̃ξ(0)δη2n = Lσ(0)ξ(0)δη2n . Then, assume that [⋉0

l=sLσ(l)ξ(l)]δη2n = [⋉0
l=sL̃σ̃(l)̃ξ(l)]δη2n is

true for k = s ∈ [0 : k∗ − 2]. Considering the case of k = s + 1, we obtain

[⋉0
l=s+1Lσ(l)ξ(l)]δη2n = [Lσ(s + 1)ξ(s + 1)][⋉0

l=sL̃σ̃(l)̃ξ(l)]δη2n

= [L̃σ̃(s + 1)̃ξ(s + 1)][⋉0
l=sL̃σ̃(l)̃ξ(l)]δη2n

= [⋉0
l=s+1L̃σ̃(l)̃ξ(l)]δη2n

based on Assumptions 2.2 and 2.3 and η , µ. Accordingly, (3.6) is satisfied. Therefore, in view of (3.5)
and (3.6), we conclude [⋉0

l=k∗−1Lσ(l)ξ(l)]δη2n = [⋉0
l=k∗−1L̃σ̃(l)̃ξ(l)]δη2n = δ

µ
2n , which implies η ∈ Ek∗(µ).

Because η ∈ Ek∗(µ) contradicts η <
⋃2n

k=0 Ek(µ), the conclusion follows.

Remark 3.1. Since k∗ is the minimum integer that satisfies (M̃k∗)µ,η > 0, one concludes that δη2n cannot
reach δµ2n within k∗ steps. When time increases from 0 to s step by step, s + 1 steps are actually taken.
Thus, we derive from s ∈ [0 : k∗ − 2] that [⋉0

l=sL̃σ̃(l)̃ξ(l)]δη2n , δ
µ
2n , which means that δµ2n cannot be
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reached from δη2n within s + 1 steps. Suppose that [⋉0
l=sL̃σ̃(l)̃ξ(l)]δη2n = δ

y
2n . Then, we have δy

2n , δ
µ
2n .

Thus, we derive from Assumptions 2.2 and 2.3 that L̃σ̃(s + 1)̃ξ(s + 1)δy
2n = Lσ(s + 1)ξ(s + 1)δy

2n .
Now, we apply the above results to explore the robust stability of system (2.3).

Theorem 3.2. Under Assumptions 2.1–2.3, system (2.3) is robustly stable at xe = δ
θ
2n , if and only if

γp
µ <

2n⋃
k=0

Ek(µ). (3.7)

Proof. (Necessity) In order to prove γp
µ <
⋃2n

k=0 Ek(µ), we only need to demonstrate γp
µ <
⋃2n

k=0 Ẽk(µ) in
the light of Lemma 3.2. If γp

µ ∈
⋃2n

k=0 Ẽk(µ), then there exists k∗ ∈ [1 : 2n] satisfying (M̃k∗)µ,γp
µ
> 0.

Moreover, we have M̃γp
µ ,µ
> 0 on the basis of Colµ(L̃p) = δγ

p
µ

2n . Therefore, we conclude

(M̃k∗+1)µ,µ =
2n∑
j=1

(M̃k∗)µ, jM̃ j,µ ≥ (M̃k∗)µ,γp
µ
M̃γp

µ ,µ
> 0,

which contradicts the robust stability at xe of system (2.3).
(Sufficiency) We derive from γp

µ < E0(µ) that γp
µ , µ.

Assume that system (2.3) is not robustly stable to xe. Then, there exists another attractor C other than
xe. We denote C := {δi1

2n , · · · , δ
ir
2n}, r ∈ [2 : 2n − 1]. Then, we prove δγ

p
µ

2n ∈ C by a reduction to absurdity.
If i1, · · · , ir , γ

p
µ hold, then there exists a sequence of switching signals σ̃∗(0) = σ∗(0), σ̃∗(1) =

σ∗(1), · · · , σ̃∗(r − 2) = σ∗(r − 2), σ̃∗(r − 1) = σ∗(r − 1) and a sequence of disturbance inputs ξ̃∗(0) =
ξ∗(0), ξ̃∗(1) = ξ∗(1), · · · , ξ̃∗(r−2) = ξ∗(r−2), ξ̃∗(r−1) = ξ∗(r−1) satisfying L̃σ̃∗(0)̃ξ∗(0)δi1

2n = δ
i2
2n , δ

γ
p
µ

2n ,

L̃σ̃∗(1)̃ξ∗(1)δi2
2n = δ

i3
2n , δ

γ
p
µ

2n , · · · , L̃σ̃∗(r−2)̃ξ∗(r−2)δir−1
2n = δ

ir
2n , δ

γ
p
µ

2n , L̃σ̃∗(r−1)̃ξ∗(r−1)δir
2n = δ

i1
2n , δ

γ
p
µ

2n .
We consider the following two cases:

(i) L̃σ̃∗( j)̃ξ∗( j) , L̃p is satisfied for any integer j ∈ [0 : r − 1].
(ii) There exists an integer j ∈ [0 : r − 1] such that L̃σ̃∗( j)̃ξ∗( j) = L̃p holds.

For item (i), according to Assumptions 2.2 and 2.3, we know Lσ∗( j)ξ∗( j) = L̃σ̃∗( j)̃ξ∗( j), ∀ j ∈ [0 :
r − 1]. Thereby, we derive the following state transitions for system (2.2):

Lσ∗(0)ξ∗(0)δi1
2n = L̃σ̃∗(0)̃ξ∗(0)δi1

2n = δ
i2
2n , δ

γ
p
µ

2n ,

Lσ∗(1)ξ∗(1)δi2
2n = L̃σ̃∗(1)̃ξ∗(1)δi2

2n = δ
i3
2n , δ

γ
p
µ

2n ,

... (3.8)

Lσ∗(r − 2)ξ∗(r − 2)δir−1
2n = L̃σ̃∗(r − 2)̃ξ∗(r − 2)δir−1

2n = δ
ir
2n , δ

γ
p
µ

2n ,

Lσ∗(r − 1)ξ∗(r − 1)δir
2n = L̃σ̃∗(r − 1)̃ξ∗(r − 1)δir

2n = δ
i1
2n , δ

γ
p
µ

2n .

Hence, C is a cycle of system (2.2), which contradicts Assumption 2.1.
For item (ii), denote all integers j ∈ [0 : r − 1] satisfying L̃σ̃∗( j)̃ξ∗( j) = L̃p as j1, · · · , jα, where

j1 < · · · < jα. Then, we can get Lσ∗( jl)ξ∗( jl) = Lp, ∀ l ∈ [1 : α]. Noticing that Colµ(L̃p) = δγ
p
µ

2n and

L̃σ̃∗( jl)̃ξ∗( jl)δ
i jl+1

2n = L̃pδ
i jl+1

2n =

 δi jl+2

2n , δ
γ

p
µ

2n , jl ∈ [0 : r − 2],

δi1
2n , δ

γ
p
µ

2n , jl = r − 1,
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we conclude i jl+1 , µ holds for any integer jl ∈ [0 : r − 1], where l ∈ [1 : α]. Then, according to (3.8)
and Assumption 2.3, one has

Lσ∗( jl)ξ∗( jl)δ
i jl+1

2n = Lpδ
i jl+1

2n = L̃pδ
i jl+1

2n =

 δi jl+2

2n , δ
γ

p
µ

2n , jl ∈ [0 : r − 2],

δi1
2n , δ

γ
p
µ

2n , jl = r − 1.

Then, (3.8) is established for system (2.2). Hence, C is a cycle of system (2.2), which contradicts
Assumption 2.1.

To sum up, it can be inferred that δγ
p
µ

2n ∈ C in system (2.3). Accordingly, there exists k∗ ∈ Z+
satisfying

(M̃k∗)γp
µ ,γ

p
µ
> 0. (3.9)

Next, we prove

(M̃k)i,γp
µ
= (Mk)i,γp

µ
, ∀ i ∈ [1 : 2n] \ {µ}, k ∈ Z+ (3.10)

by induction. On account of γp
µ , µ and Lemma 3.1, we have M̃i,γp

µ
= Mi,γp

µ
, i ∈ [1 : 2n]. Thus,

(M̃k)i,γp
µ
= (Mk)i,γp

µ
is satisfied for i ∈ [1 : 2n] \ {µ} and k = 1. Assume that (M̃s)i,γp

µ
= (Ms)i,γp

µ
is true for

k = s ∈ Z+ and i ∈ [1 : 2n] \ {µ}. Then we have

(M̃s+1)i,γp
µ
=
∑
j,µ

M̃i, j(M̃s) j,γp
µ
+ M̃i,µ(M̃s)µ,γp

µ

=
∑
j,µ

M̃i, j(Ms) j,γp
µ
+ M̃i,µ(M̃s)µ,γp

µ
. (3.11)

According to γp
µ <

⋃2n

k=0 Ek(µ) and Theorem 3.1, we obtain γp
µ <

⋃2n

k=0 Ẽk(µ). Hence, (M̃k)µ,γp
µ
=

(Mk)µ,γp
µ
= 0 holds for any k ∈ Z+. Besides, we derive from Lemma 3.1 that M̃i, j = Mi, j, j ∈ [1 : 2n]\{µ},

i ∈ [1 : 2n]. Then, (3.11) can be converted into

(M̃s+1)i,γp
µ
=
∑
j,µ

Mi, j(Ms) j,γp
µ
+ M̃i,µ × 0 =

∑
j,µ

Mi, j(Ms) j,γp
µ
+ Mi,µ × 0

=
∑
j,µ

Mi, j(Ms) j,γp
µ
+ Mi,µ(Ms)µ,γp

µ
= (Ms+1)i,γp

µ
.

Therefore, it can be concluded that (3.10) is true.
Noting that xe < C and δγ

p
µ

2n ∈ C, we conclude that γp
µ , θ. Based on Assumption 2.1, we know

(Mk)γp
µ ,γ

p
µ
= 0, ∀ k ∈ Z+. Thus, we know from (3.10) and γp

µ , µ that (M̃k)γp
µ ,γ

p
µ
= (Mk)γp

µ ,γ
p
µ
= 0,

∀ k ∈ Z+, which contradicts (3.9). Thus, system (2.3) is robustly stable at xe.

Remark 3.2. Assume that system (2.3) is not robustly stable at xe. According to Assumption 2.2 and
γ

p
µ , µ, we know that no new fixed point is generated in system (2.3) after perturbation. Thereby, a

new attractor which is a cycle different from xe is bound to be produced.
Finally, we give an example to support the main results.
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Example 3.1. Consider the following SBN with external disturbance and three modes:



x1(t + 1) = x1(t) ∨ {⌝x1(t) ∧ [(x2(t)∧⌝x3(t)) ∨ (ξ(t)∧⌝x2(t) ∧ x3(t))
∨ (⌝ξ(t)∧⌝x2(t))]},

x2(t + 1) = {ξ(t) ∧ x3(t) ∧ [(x1(t) ∧ x2(t))∨⌝x1(t)]} ∨ {⌝ξ(t)∧⌝x1(t)
∧ [(x2(t)∧⌝x3(t)) ∨ (⌝x2(t) ∧ x3(t))]},

x3(t + 1) = (ξ(t)∧⌝x1(t)∧⌝x2(t)∧⌝x3(t)) ∨ {(⌝ξ(t) ∧ x2(t)) ∧ [(x1(t)
∧ x3(t))∨⌝x1(t)]},

x1(t + 1) = x1(t) ∨ {⌝x1(t) ∧ [(ξ(t) ∧ x2(t)) ∨ (⌝ξ(t)∧⌝x2(t)) ∨ (ξ(t)
∧⌝x2(t) ∧ x3(t)) ∨ (⌝ξ(t) ∧ x2(t))∧⌝x3(t)]},

x2(t + 1) = (ξ(t) ∧ x1(t) ∧ x3(t)) ∨ {⌝x1(t)∧⌝x2(t) ∧ [(ξ(t) ∧ x3(t))
∨ (⌝ξ(t)∧⌝x3(t))]},

x3(t + 1) = ξ(t)∧⌝x1(t)∧⌝x2(t),

(3.12)



x1(t + 1) = x1(t) ∨ {⌝x1(t) ∧ [(ξ(t)∧⌝x3(t)) ∨ (⌝ξ(t) ∧ x2(t)∧⌝x3(t))
∨ (⌝ξ(t)∧⌝x2(t))]},

x2(t + 1) = {x1(t) ∧ x3(t) ∧ [(ξ(t)∧⌝x2(t))∨⌝ξ(t)]} ∨ {[(ξ(t)∧⌝x1(t))
∨ (⌝ξ(t)∧⌝x1(t))] ∧ [(x2(t)∧⌝x3(t)) ∨ (⌝x2(t) ∧ x3(t))]},

x3(t + 1) = {x2(t) ∧ x3(t) ∧ [(ξ(t) ∧ x1(t)) ∨ (⌝ξ(t)∧⌝x1(t))]}∨
(⌝ξ(t)∧⌝x1(t)∧⌝x2(t)),

which has the following algebraic form:

x(t + 1) = Lσ(t)ξ(t)x(t), (3.13)

where x(t) ∈ ∆8, σ : N→ {1, 2, 3}, ξ(t) ∈ ∆, and

L = δ8[4 4 2 4 6 4 2 7 3 4 4 4 7 1 2 4
2 4 2 4 4 4 1 7 3 4 4 4 8 4 4 2
3 4 2 4 8 2 6 4 2 4 2 4 7 2 1 3].

We partition L into six equal parts L1, L2, L3, L4, L5, and L6 by column. Note that

M =
6∑

i=1

Li =



0 0 0 0 0 1 2 0
2 0 4 0 0 2 2 1
3 0 0 0 0 0 0 1
1 6 2 6 1 3 1 2
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 2 0 0 2
0 0 0 0 2 0 0 0


.
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Then, we have

M7 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

279, 936 279, 936 279, 936 279, 936 279, 936 279, 936 279, 936 279, 936
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Based on [11], system (3.13) is robustly stable at δ4
8.

Assume that the one-bit function perturbation changes the value of Col3(L2). After a simple
calculation, we obtain E0(3) = {3}, E1(3) = {1, 8}, E2(3) = {5, 6, 7}, E3(3) = {5, 7, 8}, E4(3) =
{5, 8}, E5(3) = {5}, and E6(3) = E7(3) = E8(3) = ∅. Therefore,

⋃23

k=0 Ek(3) = {1, 3, 5, 6, 7, 8}. In the
light of Theorem 3.2, we conclude that system (3.13) is robustly stable at δ4

8 after the value of Col3(L2)
is changed to δ2

8, while system (3.13) is not robustly stable at δ4
8 after the value of Col3(L2) is changed

to δ1
8, δ

3
8, δ

5
8, δ

6
8, δ

7
8, or δ8

8. These results can be demonstrated in Figures 1 and 2, where σ(4 j) = δ1
3,

σ(4 j + 1) = δ1
3, σ(4 j + 2) = δ1

3, σ(4 j + 3) = δ3
3, ξ(2 j) = δ2

2, ξ(2 j + 1) = δ1
2, ∀ j ∈ N.

0 1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

Figure 1. State trajectory of system (3.13) subject to the one-bit function perturbation which
changes the value of Col3(L2) to δ2

8.
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0 1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

Figure 2. State trajectory of system (3.13) subject to the one-bit function perturbation which
changes the value of Col3(L2) to δ5

8.

4. Conclusions

In this paper, we have investigated the robust stability of SBNs subject to external disturbance and
one-bit function perturbation. We have constructed the reachable sets of the perturbed state before and
after function perturbation. On the basis of the reachable sets, we have further studied the properties of
the elements which do not belong to the sets. Then, with the assistance of the reachable sets, we have
proposed a new criterion for verifying whether the perturbed SBN is robustly stable or not.

The computational complexity of our results is high. Therefore, we plan to further explore new
criteria with lower computational complexity in the future. One can design flipping control or time-
variant feedback control [35] to enable the robust stability of perturbed SBNs when the condition of
Theorem 3.2 is no longer satisfied. Moreover, further investigation can focus on the robust stability of
SBNs subject to Markovian jump disturbances [36] and multi-bit function perturbations.
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