Research article

Solvability of an infinite system of $ n $-th order differential equations in a paranormed sequence space and its numerical solution

  • Received: 27 December 2024 Revised: 06 July 2025 Accepted: 17 July 2025 Published: 25 July 2025
  • MSC : 47H09, 47H10, 34A12, 11B68

  • In this paper, we introduce a ball measure of noncompactness in the Banach sequence space $ bv_q $ $ (1\leq q < \infty) $ containing the space $ l_q $. By applying the technique of measures of noncompactness and Meir–Keeler condensing mappings, we investigate the existence of solutions of an infinite system of differential equations of order $ n $ with boundary conditions. Some examples are provided to support our main results. A numerical spectral method based on Bernoulli polynomials is applied to find the approximate solution of an example.

    Citation: Hojjatollah Amiri Kayvanloo, Mohammad Mehrabinezhad, Mahnaz Khanehgir, Reza Allahyari, Mohammad Mursaleen. Solvability of an infinite system of $ n $-th order differential equations in a paranormed sequence space and its numerical solution[J]. AIMS Mathematics, 2025, 10(7): 16804-16821. doi: 10.3934/math.2025755

    Related Papers:

  • In this paper, we introduce a ball measure of noncompactness in the Banach sequence space $ bv_q $ $ (1\leq q < \infty) $ containing the space $ l_q $. By applying the technique of measures of noncompactness and Meir–Keeler condensing mappings, we investigate the existence of solutions of an infinite system of differential equations of order $ n $ with boundary conditions. Some examples are provided to support our main results. A numerical spectral method based on Bernoulli polynomials is applied to find the approximate solution of an example.



    加载中


    [1] W. M. Abd-Elhameed, H. M. Ahmed, Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials, AIMS Math., 9 (2024), 2137–2166. http://dx.doi.org/10.3934/math.2024107 doi: 10.3934/math.2024107
    [2] A. Aghajani, J. Banaś, Y. Jalilian, Existence of solution for a class of nonlinear Volterra singular integral equation, Comput. Math. Appl., 62 (2011), 1215–1227. http://dx.doi.org/10.1016/j.camwa.2011.03.049 doi: 10.1016/j.camwa.2011.03.049
    [3] A. Aghajani, M. Mursaleen, A. S. Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci., 35B (2015), 552–566. https://doi.org/10.1016/S0252-9602(15)30003-5 doi: 10.1016/S0252-9602(15)30003-5
    [4] A. Aghajani, E. Pourhadi, Application of measure of noncompactness to $l_1$-solvability of infinite systems of second order differential equations, B. Belg. Math. Soc.-Sim., 22 (2015), 105–118. https://doi.org/10.36045/bbms/1426856862 doi: 10.36045/bbms/1426856862
    [5] A. Alotaibi, M. Mursaleen, B. A. S. Alamri, Solvability of second order linear differential equations in the sequence space $n(\phi)$, Adv. Differ. Equ., 2018 (2018), 377. https://doi.org/10.1186/s13662-018-1810-9 doi: 10.1186/s13662-018-1810-9
    [6] H. A. Kayvanloo, M. Khanehgir, R. Allahyari, A family of measures of noncompactness in the Hölder space $ C^{n, \gamma}(\mathbb{R_+})$ and its application to some fractional differential equations and numerical methods, J. Comput. Appl. Math., 363 (2020), 256–272. https://doi.org/10.1016/j.cam.2019.06.012 doi: 10.1016/j.cam.2019.06.012
    [7] H. A. Kayvanloo, M. Khanehgir, M. Mursaleen, Solution of infinite system of third-order three-point nonhomogeneous boundary value problem in weighted sequence space $bv_p^{\omega}$, Rend. Circ. Mat. Palerm. Ser., 73 (2023), 1329–1342. https://doi.org/10.1007/s12215-023-00986-1 doi: 10.1007/s12215-023-00986-1
    [8] H. A. Kayvanloo, H. Mehravaran, M. Mursaleen, R. Allahyari, A. Allahyari, Solvability of infinite systems of Caputo-Hadamard fractional differential equations in the triple sequence space $c^3(\Delta)$, J. Pseudo-Differ. Oper., 15 (2024), 26. https://doi.org/10.1007/s11868-024-00601-6 doi: 10.1007/s11868-024-00601-6
    [9] H. A. Kayvanloo, M. Mursaleen, M. Mehrabinezhad, F. P. Najafabadi, Solvability of some fractional differential equations in the Hölder space $\mathcal{H}_{\gamma}(\mathbb{R_+})$ and their numerical treatment via measures of noncompactness, Math. Sci., 17 (2022), 1–11. https://doi.org/10.1007/s40096-022-00458-0 doi: 10.1007/s40096-022-00458-0
    [10] S. H. Amora, A. Traiki, Meir-Keeler condensing operators and applications, Filomat, 35 (2021), 2175–2188. https://doi.org/10.2298/FIL2107175H doi: 10.2298/FIL2107175H
    [11] S. Banach, Sur les op$\acute{e}$rations dans les ensembles abstraits et leur application aux $\acute{e}$quations integrales, Fund. Math., 3 (1922), 133–181. Available from: http://eudml.org/doc/213289.
    [12] J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Lecture notes in pure and applied mathematics, Marcel Dekker, New York, 60 (1980).
    [13] J. Banaś, M. Mursaleen, S. M. H. Rizvi, Existence of solutions to a boundary-value problem for an infinite system of differential equations, Electron. J. Differ. Eq., 2017 (2017), 1–12. Available from: http://ejde.math.txstate.edu.
    [14] F. Basar, Summability theory and its appliactions, Bentham Science Publishers, 2011. https://doi.org/10.2174/97816080545231120101
    [15] F. Basar, B. Altay, On the space of sequences of $p$-bounded variation and related matrix mappings, Ukr. Math. J., 55 (2003), 136–147. https://doi.org/10.1023/A:1025080820961 doi: 10.1023/A:1025080820961
    [16] M. Belhadj, A. B. Amar, M. Boumaiza, Some fixed point theorems for Meir-Keeler condensing operators and application to asystem of integral equations, B. Belg. Math. Soc.-Sim., 26 (2019), 223–239. https://doi.org/10.36045/bbms/1561687563 doi: 10.36045/bbms/1561687563
    [17] D. Bugajewska, P. Kasprzak, Nonlinear composition operators in $bv_p$-spaces, Banach J. Math. Anal., 19 (2025), 47. https://doi.org/10.1007/s43037-025-00429-2 doi: 10.1007/s43037-025-00429-2
    [18] E. Doha, R. Hafez, M. Abdelkawy, S. Ezz-Eldien, T. Taha, M. Zaky, et al., Composite Bernoulli-Laguerre collocation method for a class of hyperbolic telegraph-type equations, Rom. Rep. Phys., 69 (2017), 1–21.
    [19] D. G. Duffy, Green's function with applications, Chapman and Hall/CRC Press, London, 2001.
    [20] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74–79. https://doi.org/10.1112/jlms/s1-37.1.74 doi: 10.1112/jlms/s1-37.1.74
    [21] M. Ghasemi, M. Khanehgir, R. Allahyari, H. A. Kayvanloo, Positive solutions of infinite coupled system of fractional differential equations in the sequence space of weighted means, AIMS Math., 7 (2022), 2680–2694. https://doi.org/10.3934/math.2022151 doi: 10.3934/math.2022151
    [22] R. Hafez, E. Doha, A. Bhrawy, D. Baleanu, Numerical solutions of two-dimensional mixed Volterra-Fredholm integral equations via Bernoulli collocation method, Rom. J. Phys., 62 (2017), 1–11. Available from: http://hdl.handle.net/20.500.12416/2486.
    [23] M. Heydari, Z. Avazzadeh, New formulation of the orthonormal Bernoulli polynoimals for solving the variable-order time fractional couled Boussinesq-Burger's equations, Eng. Comput., 37 (2020), 3509–3517. https://doi.org/10.1007/s00366-020-01007-w doi: 10.1007/s00366-020-01007-w
    [24] M. Imaninezhad, M. Miri, The dual space of the sequence space $bv_p$ $1\leq p < \infty$, Acta Math. Univ. Comeniance, 1 (2010), 143–149.
    [25] A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat, 17 (2003), 59–78. https://doi.org/10.2298/FIL0317059J doi: 10.2298/FIL0317059J
    [26] K. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301–309. Available from: http://eudml.org/doc/212357.
    [27] K. Kuratowski, Topology: Volume I, Academic Press, Warsaw, 1966. https://doi.org/10.1017/S0008439500030022
    [28] B. Lalrinhlua, A. M. Saeed, A. H. Ganie, R. Tiwari, S. Das, F. Mofarreh, et al., Study of vibrations in smart materials semiconductor under differential imperfect contact mechanism and nanoscale effect with electromechanical coupling effect, Acta Mech., 236 (2025), 2383–2403. https://doi.org/10.1007/s00707-025-04279-9 doi: 10.1007/s00707-025-04279-9
    [29] J. R. Loh, C. Phang, Numerical solution of Fredholm fractional integro-differential equation with right-sided Caputo's derivative using Bernoulli polynomials operational matrix of fractional derivative, Mediterr. J. Math., 16 (2019), 1–25. https://doi.org/10.1007/s00009-019-1300-7 doi: 10.1007/s00009-019-1300-7
    [30] Y. K. Ma, M. M. Raja, V. Vijayakumar, A. Shukla, W. Albalawi, K. S. Nisar, Existence and continuous dependence results for fractional evolution integrodifferential equations of order $r\in(1, 2)$, Alex. Eng. J., 61 (2022), 9929–9939. https://doi.org/10.1016/j.aej.2022.03.010 doi: 10.1016/j.aej.2022.03.010
    [31] M. Mehrabinezhad, N. Eftekhari, Application of periodic Bernoulli polynomials in approximating the solution of linear time-delay optimal control problems, J. Differ. Eq. Appl., 27 (2021), 1329–1354. https://doi.org/10.1080/10236198.2021.1983551 doi: 10.1080/10236198.2021.1983551
    [32] A. Meir, E. A. Keeler, A Theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6
    [33] S. A. Mohiuddine, A. Das, A. Alotaibi, Existence of solutions for infinite system of nonlinear $q$-fractional boundary value problem in Banach spaces, Filomat, 37 (2023), 10171–10180. https://doi.org/10.1007/978-981-96-2476-8-3 doi: 10.1007/978-981-96-2476-8-3
    [34] M. Mursaleen, Some geometric properties of a sequence space related to $l_p$, Bull. Aust. Math. Soc., 67 (2003), 343–347. https://doi.org/10.1017/S0004972700033803 doi: 10.1017/S0004972700033803
    [35] M. Mursaleen, B. Bilalov, S. M. H. Rizvi, Applications of measures of noncompactness to infinite system of fractional differential equations, Filomat, 31 (2017), 3421–3432. https://doi.org/10.2298/FIL1711421M doi: 10.2298/FIL1711421M
    [36] M. Mursaleen, S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in $l_p$ spaces, Nonlinear Anal., 75 (2012), 2111–2115. https://doi.org/10.1016/j.na.2011.10.011 doi: 10.1016/j.na.2011.10.011
    [37] M. Mursaleen, V. Rakouevic, A survey on measures of noncompactness with some applications in infinite systems of differential equations, Aequationes Math., 96 (2022), 489–514. https://doi.org/10.1007/s00010-021-00848-0 doi: 10.1007/s00010-021-00848-0
    [38] M. Mursaleen, S. M. H. Rizvi, Solvability of infinite system of second order differential equations in $c_0$ and $l_1$ by Meir-Keeler condensing operator, Proc. Am. Math. Soc., 144 (2016), 4279–4289. https://doi.org/10.1090/proc/13048 doi: 10.1090/proc/13048
    [39] M. Mursaleen, E. Savas, Solvability of an infinite system of fractional differential equations with $p$-Laplacian operator in a new tempered sequence space, J. Pseudo-Differ. Oper., 14 (2023). https://doi.org/10.1007/s11868-023-00552-4 doi: 10.1007/s11868-023-00552-4
    [40] C. Phang, Y. T. Toh, F. S. M. Nasrudin, An operational matrix method based on poly-Bernoulli polynomials for solving fractional delay differential equations, Computation, 8 (2020), 82. https://doi.org/10.3390/computation8030082 doi: 10.3390/computation8030082
    [41] M. M. Raja, V. Vijayakumar, K. C. Veluvolu, An analysis on approximate controllability results for impulsive fractional differential equations of order $1 < r < 2$ with infinite delay using sequence method, Math. Method. Appl. Sci., 47 (2024), 336–351. https://doi.org/10.1002/mma.9657 doi: 10.1002/mma.9657
    [42] M. M. Raja, V. Vijayakumar, K. C. Veluvolu, Improved order in Hilfer fractional differential systems: Solvability and optimal control problem for hemivariational inequalities, Chaos Soliton. Fract., 188 (2024), 115558. https://doi.org/10.1016/j.chaos.2024.115558 doi: 10.1016/j.chaos.2024.115558
    [43] W. L. C. Sargent, Some sequence spaces related to the $l^p$ spaces, J. London Math. Soc., 35 (1960), 161–171. https://doi.org/10.1112/jlms/s1-35.2.161 doi: 10.1112/jlms/s1-35.2.161
    [44] Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers' equation, J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
    [45] Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 256–276. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
    [46] F. Tennie, L. Magri, Solving nonlinear differential equations on quantum computers: A Fokker-Planck approach, arXiv preprint, 2024. https://doi.org/10.48550/arXiv.2401.13500
    [47] A. Vakeel, A. Khan, A new type of difference sequence spaces, Appl. Sci., 12 (2010), 102–108. Available from: http://eudml.org/doc/225421.
    [48] Y. Yang, H. Li, Neural ordinary differential equations for robust parameter estimation in dynamic systems with physical priors, Appl. Soft Comput., 169 (2025). https://doi.org/10.1016/j.asoc.2024.112649
    [49] B. Zhang, Y. Tang, X. Zhang, A new method for solving variable coefficients fractional differential equations based on a hybrid of bernoulli polynomials and block pulse functions, Math. Method. Appl. Sci., 46 (2023), 8054–8073. https://doi.org/10.1002/mma.7352 doi: 10.1002/mma.7352
    [50] J. Zhang, X. Yang, S. Wang, The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations, AIMS Math., 33 (2025), 3305–3327. https://doi.org/10.3934/era.2025146 doi: 10.3934/era.2025146
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(574) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog