This paper is devoted to a simple and short proof on the sharp upper bound of lifespan of classical solutions to wave equations with the critical power nonlinearities of spatial derivatives of the unknown function. Such a proof is so-called "slicing method", which may help us to extend the result for various equations and systems.
Citation: Takiko Sasaki, Kerun Shao, Hiroyuki Takamura. Slicing method for nonlinear integral inequalities related to critical nonlinear wave equations[J]. AIMS Mathematics, 2025, 10(7): 16796-16803. doi: 10.3934/math.2025754
This paper is devoted to a simple and short proof on the sharp upper bound of lifespan of classical solutions to wave equations with the critical power nonlinearities of spatial derivatives of the unknown function. Such a proof is so-called "slicing method", which may help us to extend the result for various equations and systems.
| [1] |
K. Shao, H. Takamura, C. Wang, Blow-up of solutions to semilinear wave equations with spatial derivatives, Discrete Contin. Dyn. Syst., 45 (2025), 410–424. https://doi.org/10.3934/dcds.2024098 doi: 10.3934/dcds.2024098
|
| [2] |
T. Sasaki, S. Takamatsu, H. Takamura, The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative, AIMS Mathematics, 8 (2023), 25477–25486. https://doi.org/10.3934/math.20231300 doi: 10.3934/math.20231300
|
| [3] |
Y. Haruyama, H. Takamura, Blow-up of classical solutions of quasilinear wave equations in one space dimension, Nonlinear Anal. Real World Appl., 81 (2025), 104212. https://doi.org/10.1016/j.nonrwa.2024.104212 doi: 10.1016/j.nonrwa.2024.104212
|
| [4] |
Y. Zhou, Blow up of solutions to the Cauchy problem for nonlinear wave equations, Chinese Ann. Math. Ser. B, 22 (2001), 275–280. https://doi.org/10.1142/S0252959901000280 doi: 10.1142/S0252959901000280
|
| [5] |
F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235–268. https://doi.org/10.1007/BF01647974 doi: 10.1007/BF01647974
|
| [6] |
N. A. Lai, H. Takamura, Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case, Nonlinear Anal., 168 (2018), 222–237. https://doi.org/10.1016/j.na.2017.12.008 doi: 10.1016/j.na.2017.12.008
|
| [7] |
M. Ikeda, M. Sobajima, K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differ. Equ., 267 (2019), 5165–5201. https://doi.org/10.1016/j.jde.2019.05.029 doi: 10.1016/j.jde.2019.05.029
|
| [8] |
K. Wakasa, B. Yordanov, On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case, Nonlinear Anal., 180 (2019), 67–74. https://doi.org/10.1016/j.na.2018.09.012 doi: 10.1016/j.na.2018.09.012
|
| [9] |
R. Agemi, Y. Kurokawa, H. Takamura, Critical curve for $p$-$q$ systems of nonlinear wave equations in three space dimensions, J. Differ. Equ., 167 (2000), 87–133. https://doi.org/10.1006/jdeq.2000.3766 doi: 10.1006/jdeq.2000.3766
|
| [10] |
K. Wakasa, B. Yordanov, Blow-up of solutions to critical semilinear wave equations with variable coefficients, J. Differ. Equ., 266 (2019), 5360–5376. https://doi.org/10.1016/j.jde.2018.10.028 doi: 10.1016/j.jde.2018.10.028
|
| [11] |
S. Kitamura, H. Takamura, K. Wakasa, The lifespan estimates of classical solutions of one dimensional semilinear wave equations with characteristic weights, J. Math. Anal. Appl., 528 (2023), 127516. https://doi.org/10.1016/j.jmaa.2023.127516 doi: 10.1016/j.jmaa.2023.127516
|
| [12] |
R. Kido, T. Sasaki, S. Takamatsu, H. Takamura, The generalized combined effect for one dimensional wave equations with semilinear terms including product type, J. Differ. Equ., 403 (2024), 576–618. https://doi.org/10.1016/j.jde.2024.05.032 doi: 10.1016/j.jde.2024.05.032
|
| [13] |
W. Chen, M. Reissig, On the critical regularity of nonlinearities for semilinear classical wave equations, Math. Ann., 390 (2024), 4087–4122. https://doi.org/10.1007/s00208-024-02853-5 doi: 10.1007/s00208-024-02853-5
|
| [14] | C. Wang, X. Zhang, Generalize Strauss conjecture for semilinear wave equations on ${{\bf{R}}}^3$, 2024, arXiv: 2405.12761. https://doi.org/10.48550/arXiv.2405.12761 |
| [15] | W. Chen, A. Palmieri, On the threshold nature of the Dini continuity for a Glassey derivative-type nonlinearity in a critical semilinear wave equation, 2024, arXiv: 2306.11478. https://doi.org/10.48550/arXiv.2306.11478 |
| [16] | K. Shao, Criteria of the existence of global solutions to semilinear wave equations with first-order derivatives on exterior domains, 2024, arXiv: 2412.05544. https://doi.org/10.48550/arXiv.2412.05544 |