Research article

Slicing method for nonlinear integral inequalities related to critical nonlinear wave equations

  • Received: 27 April 2025 Revised: 14 July 2025 Accepted: 17 July 2025 Published: 25 July 2025
  • MSC : 35B44, 35L71

  • This paper is devoted to a simple and short proof on the sharp upper bound of lifespan of classical solutions to wave equations with the critical power nonlinearities of spatial derivatives of the unknown function. Such a proof is so-called "slicing method", which may help us to extend the result for various equations and systems.

    Citation: Takiko Sasaki, Kerun Shao, Hiroyuki Takamura. Slicing method for nonlinear integral inequalities related to critical nonlinear wave equations[J]. AIMS Mathematics, 2025, 10(7): 16796-16803. doi: 10.3934/math.2025754

    Related Papers:

  • This paper is devoted to a simple and short proof on the sharp upper bound of lifespan of classical solutions to wave equations with the critical power nonlinearities of spatial derivatives of the unknown function. Such a proof is so-called "slicing method", which may help us to extend the result for various equations and systems.



    加载中


    [1] K. Shao, H. Takamura, C. Wang, Blow-up of solutions to semilinear wave equations with spatial derivatives, Discrete Contin. Dyn. Syst., 45 (2025), 410–424. https://doi.org/10.3934/dcds.2024098 doi: 10.3934/dcds.2024098
    [2] T. Sasaki, S. Takamatsu, H. Takamura, The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative, AIMS Mathematics, 8 (2023), 25477–25486. https://doi.org/10.3934/math.20231300 doi: 10.3934/math.20231300
    [3] Y. Haruyama, H. Takamura, Blow-up of classical solutions of quasilinear wave equations in one space dimension, Nonlinear Anal. Real World Appl., 81 (2025), 104212. https://doi.org/10.1016/j.nonrwa.2024.104212 doi: 10.1016/j.nonrwa.2024.104212
    [4] Y. Zhou, Blow up of solutions to the Cauchy problem for nonlinear wave equations, Chinese Ann. Math. Ser. B, 22 (2001), 275–280. https://doi.org/10.1142/S0252959901000280 doi: 10.1142/S0252959901000280
    [5] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235–268. https://doi.org/10.1007/BF01647974 doi: 10.1007/BF01647974
    [6] N. A. Lai, H. Takamura, Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case, Nonlinear Anal., 168 (2018), 222–237. https://doi.org/10.1016/j.na.2017.12.008 doi: 10.1016/j.na.2017.12.008
    [7] M. Ikeda, M. Sobajima, K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differ. Equ., 267 (2019), 5165–5201. https://doi.org/10.1016/j.jde.2019.05.029 doi: 10.1016/j.jde.2019.05.029
    [8] K. Wakasa, B. Yordanov, On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case, Nonlinear Anal., 180 (2019), 67–74. https://doi.org/10.1016/j.na.2018.09.012 doi: 10.1016/j.na.2018.09.012
    [9] R. Agemi, Y. Kurokawa, H. Takamura, Critical curve for $p$-$q$ systems of nonlinear wave equations in three space dimensions, J. Differ. Equ., 167 (2000), 87–133. https://doi.org/10.1006/jdeq.2000.3766 doi: 10.1006/jdeq.2000.3766
    [10] K. Wakasa, B. Yordanov, Blow-up of solutions to critical semilinear wave equations with variable coefficients, J. Differ. Equ., 266 (2019), 5360–5376. https://doi.org/10.1016/j.jde.2018.10.028 doi: 10.1016/j.jde.2018.10.028
    [11] S. Kitamura, H. Takamura, K. Wakasa, The lifespan estimates of classical solutions of one dimensional semilinear wave equations with characteristic weights, J. Math. Anal. Appl., 528 (2023), 127516. https://doi.org/10.1016/j.jmaa.2023.127516 doi: 10.1016/j.jmaa.2023.127516
    [12] R. Kido, T. Sasaki, S. Takamatsu, H. Takamura, The generalized combined effect for one dimensional wave equations with semilinear terms including product type, J. Differ. Equ., 403 (2024), 576–618. https://doi.org/10.1016/j.jde.2024.05.032 doi: 10.1016/j.jde.2024.05.032
    [13] W. Chen, M. Reissig, On the critical regularity of nonlinearities for semilinear classical wave equations, Math. Ann., 390 (2024), 4087–4122. https://doi.org/10.1007/s00208-024-02853-5 doi: 10.1007/s00208-024-02853-5
    [14] C. Wang, X. Zhang, Generalize Strauss conjecture for semilinear wave equations on ${{\bf{R}}}^3$, 2024, arXiv: 2405.12761. https://doi.org/10.48550/arXiv.2405.12761
    [15] W. Chen, A. Palmieri, On the threshold nature of the Dini continuity for a Glassey derivative-type nonlinearity in a critical semilinear wave equation, 2024, arXiv: 2306.11478. https://doi.org/10.48550/arXiv.2306.11478
    [16] K. Shao, Criteria of the existence of global solutions to semilinear wave equations with first-order derivatives on exterior domains, 2024, arXiv: 2412.05544. https://doi.org/10.48550/arXiv.2412.05544
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(513) PDF downloads(30) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog