This paper investigates the well-posedness of mild solutions for a linear time-fractional Cable equation on a bounded domain $ \Omega \subset \mathbb{R}^d $ ($ d \geq 1 $) with a $ C^2 $ boundary:
$ \begin{align*} \left\{ \begin{aligned} &\partial_t u = \partial_t^{1-\alpha}\Delta u - \partial_t^{1-\beta}u + f, \quad (t, x) \in (0, T) \times \Omega, \\ &u(0, x) = u_0(x), \quad x\in \Omega, \\ &u = 0, \quad x\in\partial\Omega, \end{aligned} \right. \end{align*} $
where $ 0 < \alpha $, $ \beta < 1 $, and $ \partial_{t}^{1-\beta} $ and $ \partial_{t}^{1-\alpha} $ denote the Riemann–Liouville fractional derivatives of orders $ 1-\beta $ and $ 1-\alpha $, respectively. By employing the eigenfunction expansion method, we constructed the mild solution and established its definition. Utilizing the Banach contraction mapping principle and properties of the Mittag-Leffler function, we derived the existence, uniqueness, and regularity of mild solutions for the linear problem. Furthermore, we introduced a weighted Hölder continuous function space and demonstrated the existence and uniqueness of mild solutions within this frameworks. The results obtained in this work contribute to the theoretical understanding of time-fractional Cable equations and serve as a foundation for further studies in fractional-order diffusion processes.
Citation: Hujing Tan, Pu Wang. The well-posedness and regularity of mild solutions to the time-fractional Cable equation[J]. AIMS Mathematics, 2025, 10(7): 16624-16641. doi: 10.3934/math.2025745
This paper investigates the well-posedness of mild solutions for a linear time-fractional Cable equation on a bounded domain $ \Omega \subset \mathbb{R}^d $ ($ d \geq 1 $) with a $ C^2 $ boundary:
$ \begin{align*} \left\{ \begin{aligned} &\partial_t u = \partial_t^{1-\alpha}\Delta u - \partial_t^{1-\beta}u + f, \quad (t, x) \in (0, T) \times \Omega, \\ &u(0, x) = u_0(x), \quad x\in \Omega, \\ &u = 0, \quad x\in\partial\Omega, \end{aligned} \right. \end{align*} $
where $ 0 < \alpha $, $ \beta < 1 $, and $ \partial_{t}^{1-\beta} $ and $ \partial_{t}^{1-\alpha} $ denote the Riemann–Liouville fractional derivatives of orders $ 1-\beta $ and $ 1-\alpha $, respectively. By employing the eigenfunction expansion method, we constructed the mild solution and established its definition. Utilizing the Banach contraction mapping principle and properties of the Mittag-Leffler function, we derived the existence, uniqueness, and regularity of mild solutions for the linear problem. Furthermore, we introduced a weighted Hölder continuous function space and demonstrated the existence and uniqueness of mild solutions within this frameworks. The results obtained in this work contribute to the theoretical understanding of time-fractional Cable equations and serve as a foundation for further studies in fractional-order diffusion processes.
| [1] |
M. A. Abdelkawy, R. T. Alqahtani, Shifted Jacobi collocation method for solving multi-dimensional fractional Stokes' first problem for a heated generalized second grade fluid, Adv. Differ. Equations, 1 (2016), 114. https://doi.org/10.1186/s13662-016-0845-zz doi: 10.1186/s13662-016-0845-zz
|
| [2] |
A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear Cable equation, Nonlinear Dyn., 80 (2015), 101–116. https://doi.org/10.1007/s11071-014-1854-7 doi: 10.1007/s11071-014-1854-7
|
| [3] |
M. Dehghan, M. Abbaszadeh, Analysis of the element free Galerkin (EFG) method for solving fractional Cable equation with Dirichlet boundary condition, Appl. Numer. Math., 109 (2016), 208–234. https://doi.org/10.1016/j.apnum.2016.07.002 doi: 10.1016/j.apnum.2016.07.002
|
| [4] |
M. A. Khan, N. Alias, I. Khan, F. M. Salama, S. M. Eldin, A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional Cable equation, Sci. Rep., 13 (2023), 1549. https://doi.org/10.1038/s41598-023-28741-7 doi: 10.1038/s41598-023-28741-7
|
| [5] |
C. Li, W. H. Deng, Analytical solutions, moments, and their asymptotic behaviors for the time-space fractional Cable equation, Commun. Theor. Phys., 62 (2014), 54–60. https://doi.org/10.1088/0253-6102/62/1/09 doi: 10.1088/0253-6102/62/1/09
|
| [6] |
T. A. M. Langlands, B. I. Henry, S. L. Wearne, Fractional Cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol., 59 (2009), 761–808. https://doi.org/10.1007/s00285-009-0251-1 doi: 10.1007/s00285-009-0251-1
|
| [7] |
T. A. M. Langlands, B. I. Henry, S. L. Wearne, Fractional Cable equation models for anomalous electrodiffusion in nerve cells: finitedomain solutions, SIAM J. Appl. Math., 71 (2011), 1168–1203. https://doi.org/10.1137/090775920 doi: 10.1137/090775920
|
| [8] |
Y. Liu, Y.-W. Du, H. Li, J.-F. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85 (2016), 2535–2548. https://doi.org/10.1007/s11071-016-2843-9 doi: 10.1007/s11071-016-2843-9
|
| [9] |
Y. Z. Lin, W. Jiang, Numerical method for Stokes' first problem for a heated generalized second grade fluid with fractional derivative, Numer. Meth. Part. Differ. Equ., 27 (2011), 1599–1609. https://doi.org/10.1002/num.20598 doi: 10.1002/num.20598
|
| [10] |
Y. Ma, L. Chen, Error bounds of a finite difference/spectral method for the generalized time fractional Cable equation, Fractal Fract., 6 (2022), 439. https://doi.org/10.3390/fractalfract6080439 doi: 10.3390/fractalfract6080439
|
| [11] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
| [12] |
L. Peng, Y. Zhou, The existence of mild and classical solutions for time fractional Fokker–Planck equations, Monatsh. Math., 199 (2022), 377–410. https://doi.org/10.1007/s00605-022-01710-4 doi: 10.1007/s00605-022-01710-4
|
| [13] |
R. K. Saxena, Z. Tomovski, T. Sandev, Analytical solution of generalized space-time fractional Cable equation, Mathematics, 3 (2015), 153–170. https://doi.org/10.3390/math3020153 doi: 10.3390/math3020153
|
| [14] |
H. X. Zhang, X. H. Yang, X. L. Han, Discrete-time orthogonal spline collocation method with application to two-dimensional fractional Cable equation, Comput. Math. Appl., 68 (2014), 1710–1722. https://doi.org/10.1016/j.camwa.2014.10.019 doi: 10.1016/j.camwa.2014.10.019
|
| [15] |
P. Zhuang, F. Liu, I. Turner, V. Anh, Galerkin finite element method and error analysis for the fractional Cable equation, Numer. Algor., 72 (2016), 447–466. https://doi.org/10.1007/s11075-015-0055-x doi: 10.1007/s11075-015-0055-x
|
| [16] |
Y. Zhou, J. W. He, B. Ahmad, N. H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Math. Method. Appl. Sci., 42 (2019), 6775–6790. https://doi.org/10.1002/mma.5781 doi: 10.1002/mma.5781
|
| [17] | Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069 |