Research article Special Issues

Oscillation for neutral differential equations of canonical form of even-order

  • Received: 30 January 2025 Revised: 18 June 2025 Accepted: 24 June 2025 Published: 24 July 2025
  • MSC : 34C10, 34K11

  • In this article, I aimed to investigate the oscillatory properties of a novel class of neutral differential equations in their canonical form. I established new relationships between the solutions of the studied equation and their higher-order derivatives to reinforce the monotonic properties of these solutions. Using an iterative process, I present novel and sophisticated oscillatory criteria that broaden the breadth of previous findings in the literature. Several examples are provided to support and elucidate our findings, thereby emphasizing the applicability and significance of the proposed criteria.

    Citation: Ali Algarni. Oscillation for neutral differential equations of canonical form of even-order[J]. AIMS Mathematics, 2025, 10(7): 16611-16623. doi: 10.3934/math.2025744

    Related Papers:

  • In this article, I aimed to investigate the oscillatory properties of a novel class of neutral differential equations in their canonical form. I established new relationships between the solutions of the studied equation and their higher-order derivatives to reinforce the monotonic properties of these solutions. Using an iterative process, I present novel and sophisticated oscillatory criteria that broaden the breadth of previous findings in the literature. Several examples are provided to support and elucidate our findings, thereby emphasizing the applicability and significance of the proposed criteria.



    加载中


    [1] M. Braun, Qualitative theory of differential equations, In: Differential equations and their applications, New York: Springer, 1993,372–475.
    [2] T. X. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35–41. http://doi.org/10.1016/j.aml.2016.04.012 doi: 10.1016/j.aml.2016.04.012
    [3] T. X. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. http://doi.org/10.1016/j.aml.2020.106293 doi: 10.1016/j.aml.2020.106293
    [4] B. Batiha, N. Alshammari, F. Aldosari, F. Masood, O. Bazighifan, Asymptotic and oscillatory properties for even-order nonlinear neutral differential equations with damping term, Symmetry, 17 (2025), 87. https://doi.org/10.3390/sym17010087 doi: 10.3390/sym17010087
    [5] B. Almarri, A. H. Ali, A. M. Lopes, O. Bazighifan, Nonlinear differential equations with distributed delay: Some new oscillatory solutions, Mathematics, 10 (2022), 995. https://doi.org/10.3390/math10060995 doi: 10.3390/math10060995
    [6] B. Baculikova, J. Dzurina, Oscillation theorems for higher order neutral diferential equations, Appl. Math. Comput., 219 (2012), 3769–3778. https://doi.org/10.1016/j.amc.2012.10.006 doi: 10.1016/j.amc.2012.10.006
    [7] D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Viscoelastic Kelvin-Voigt model on Ulam-Hyer's stability and T-controllability for a coupled integro fractional stochastic systems with integral boundary conditions via integral contractors, Chaos Soliton. Fract., 191 (2025), 115785. https://doi.org/10.1016/j.chaos.2024.115785 doi: 10.1016/j.chaos.2024.115785
    [8] S. Althobati, O. Bazighifan, M. Yavuz, Some important criteria for oscillation of non-linear differential equations with middle term, Mathematics, 9 (2021), 346. http://doi.org/10.3390/math9040346 doi: 10.3390/math9040346
    [9] J. R. Graef, O. Ozdemir, A. Kaymaz, E. Tunc, Oscillation of damped second-order linear mixed neutral differential equations, Monatsh. Math., 194 (2021), 85–104. http://doi.org/10.1007/s00605-020-01469-6 doi: 10.1007/s00605-020-01469-6
    [10] D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor, Chaos Soliton. Fract., 186 (2024), 115278. https://doi.org/10.1016/j.chaos.2024.115278 doi: 10.1016/j.chaos.2024.115278
    [11] O. Bazighifan, P. Kumam, Oscillation theorems for advanced differential equations with p-Laplacian like operators, Mathematics, 8 (2020), 821. https://doi.org/10.3390/math8050821 doi: 10.3390/math8050821
    [12] V. E. Tarasov, Applications in physics and engineering of fractional calculus, Springer, 2019.
    [13] R. Arul, V. S. Shobha, Oscillation of second order nonlinear neutral differential equations with mixed neutral term, J. Appl. Math. Phys., 3 (2015), 1080–1089. http://doi.org/10.4236/jamp.2015.39134 doi: 10.4236/jamp.2015.39134
    [14] D. Kasinathan, D. Chalishajar, R. Kasinathan, R. Kasinathan, Exponential stability of non-instantaneous impulsive second-order fractional neutral stochastic differential equations with state-dependent delay, J. Comput. Appl. Math., 451 (2024), 116012. https://doi.org/10.1016/j.cam.2024.116012 doi: 10.1016/j.cam.2024.116012
    [15] D. N. Chalishajar, Controllability of second order impulsive neutral functional differential inclusions with infinite delay, J. Optim. Theory Appl., 154 (2012), 672–684. https://doi.org/10.1007/s10957-012-0025-6 doi: 10.1007/s10957-012-0025-6
    [16] Y. S. Qi, J. W. Yu, Oscillation of second order nonlinear mixed neutral differential equations with distributed deviating arguments, Bull. Malays. Math. Sci. Soc., 38 (2015), 543–560. https://doi.org/10.1007/s40840-014-0035-7 doi: 10.1007/s40840-014-0035-7
    [17] E. Thandapani, S. Selvarangam, M. Vijaya, R. Rama, Oscillation results for second order nonlinear differential equation with delay and advanced arguments, Kyungpook Math. J., 56 (2016), 137–146. http://doi.org/10.5666/KMJ.2016.56.1.137 doi: 10.5666/KMJ.2016.56.1.137
    [18] S. H. Liu, Q. X. Zhang, Y. H. Yu, Oscillation of even-order half-linear functional differential equations with damping, Comput. Math. Appl., 61 (2011), 2191–2196. https://doi.org/10.1016/j.camwa.2010.09.011 doi: 10.1016/j.camwa.2010.09.011
    [19] T. X. Li, B. Baculíková, J. Džurina, C. H. Zhang, Oscillation of fourth order neutral differential equations with-Laplacian like operators, Bound. Value Probl., 56 (2014), 41–58. http://doi.org/10.1186/1687-2770-2014-56 doi: 10.1186/1687-2770-2014-56
    [20] S. Althubiti, Second-order nonlinear neutral differential equations with delay term: Novel oscillation theorems, AIMS Math., 10 (2025), 7223–7237. http://doi.org/10.3934/math.2025330 doi: 10.3934/math.2025330
    [21] O. Bazighifan, A. H. Ali, F. Mofarreh, Y. N. Raffoul, Extended approach to the asymptotic behavior and symmetric solutions of advanced differential equations, Symmetry, 14 (2022), 686. http://doi.org/10.3390/sym14040686 doi: 10.3390/sym14040686
    [22] M. Alkilayh, On the oscillatory behavior of solutions to a class of second-order nonlinear differential equations, AIMS Math., 9 (2024), 36191–36201. http://doi.org/10.3934/math.20241718 doi: 10.3934/math.20241718
    [23] S. Aljawi, F. Masood, O. Bazighifan, On the oscillation of fourth-order neutral differential equations with multiple delays, AIMS Math., 10 (2025), 11880–11898. http://doi.org/10.3934/math.2025536 doi: 10.3934/math.2025536
    [24] S. H. Liu, Q. X. Zhang, Y. H. Yu, Oscillation of even-order half-linear functional differential equations with damping, Comput. Math. Appl., 61 (2011), 2191–2196. https://doi.org/10.1016/j.camwa.2010.09.011 doi: 10.1016/j.camwa.2010.09.011
    [25] O. Bazighifan, T. Abdeljawad, Improved approach for studying oscillatory properties of fourth-order advanced differential equations with $ p$-Laplacian like operator, Mathematics, 8 (2020), 656. http://doi.org/10.3390/math8050656 doi: 10.3390/math8050656
    [26] T. X. Li, B. Baculikova, J. Dzurina, C. H. Zhang, Oscillation of fourth order neutral differential equations with $p$-Laplacian like operators, Bound. Value Probl., 56 (2014), 41–58. https://doi.org/10.1186/1687-2770-2014-56 doi: 10.1186/1687-2770-2014-56
    [27] A. Zafer, Oscillation criteria for even order neutral differential equations, Appl. Math. Lett., 11 (1998), 21–25. https://doi.org/10.1016/S0893-9659(98)00028-7 doi: 10.1016/S0893-9659(98)00028-7
    [28] Q. X. Zhang, J. R. Yan, Oscillation behavior of even order neutral differential equations with variable coefficients, Appl. Math. Lett., 19 (2006), 1202–1206. https://doi.org/10.1016/j.aml.2006.01.003 doi: 10.1016/j.aml.2006.01.003
    [29] G. J. Xing, T. X. Li, C. H. Zhang, Oscillation of higher-order quasi linear neutral differential equations, Adv. Differ. Equ., 2011 (2011). https://doi.org/10.1186/1687-1847-2011-45
    [30] R. P. Agarwal, M. Bohner, T. X. Li, C. H. Zhang, A new approach in the study of oscillatory behavior of even-order neutral delay diferential equations, Appl. Math. Comput., 225 (2013), 787–794. https://doi.org/10.1016/j.amc.2013.09.037 doi: 10.1016/j.amc.2013.09.037
    [31] B. Baculikova, J. Dzurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62 (2011), 4472–4478. https://doi.org/10.1016/j.camwa.2011.10.024 doi: 10.1016/j.camwa.2011.10.024
    [32] C. Philos, A new criterion for the oscillatory and asymptotic behavior of delay differential equations, Bull. Acad. Pol. Sci. S ér. Sci. Math., 39 (1981), 367–370.
    [33] C. Philos, On the existence of non-oscillatory solutions tending to zero at $\infty $ for differential equations with positive delays, Arch. Math., 36 (1981), 168–178.
    [34] Y. Kitamura, T. Kusano, Oscillation of first-order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc., 78 (1980), 64–68. https://doi.org/10.1090/S0002-9939-1980-0548086-5 doi: 10.1090/S0002-9939-1980-0548086-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(510) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog