In this study, we proposed a modified SEVIR-S (susceptible, exposed, vaccinated, infected, recovered) model for the transmission dynamics of adenovirus by incorporating the effects of immunity waning and reinfection. Unlike the classical SEVIR framework, the extended model accounted for the possibility that recovered individuals may lose immunity over time and become susceptible again — a critical feature for accurately modeling diseases like adenovirus. To better capture the disease's memory effects and temporal dynamics, the model used the fractal-fractional Caputo-Fabrizio derivative with a power-law kernel. The paper analyzed the model's existence and stability using fixed point theory and Hyers-Ulam (H-U) stability. Furthermore, both the disease-free and endemic equilibrium points and their stability were analyzed. Also, the basic reproduction number was provided. The findings were validated through numerical simulations using an extended Adams-Bashforth method.
Citation: Rabeb Sidaoui, W. Eltayeb Ahmed, Arshad Ali, Mohammed Rabih, Amer Alsulami, Khaled Aldwoah, E. I. Hassan. Mathematical and numerical analysis of a SEVIR-S model for adenovirus with immunity waning and reinfection effects[J]. AIMS Mathematics, 2025, 10(7): 16291-16316. doi: 10.3934/math.2025728
In this study, we proposed a modified SEVIR-S (susceptible, exposed, vaccinated, infected, recovered) model for the transmission dynamics of adenovirus by incorporating the effects of immunity waning and reinfection. Unlike the classical SEVIR framework, the extended model accounted for the possibility that recovered individuals may lose immunity over time and become susceptible again — a critical feature for accurately modeling diseases like adenovirus. To better capture the disease's memory effects and temporal dynamics, the model used the fractal-fractional Caputo-Fabrizio derivative with a power-law kernel. The paper analyzed the model's existence and stability using fixed point theory and Hyers-Ulam (H-U) stability. Furthermore, both the disease-free and endemic equilibrium points and their stability were analyzed. Also, the basic reproduction number was provided. The findings were validated through numerical simulations using an extended Adams-Bashforth method.
| [1] | Conjunctivitis (pink eye), Center for Disease Control. Available from: https://www.cdc.gov/conjunctivitis/index.html. |
| [2] |
S. R. Fehily, G. B. Cross, A. J. Fuller, Bilateral conjunctivitis in a returned traveler, PLoS Negl. Trop. Dis., 9 (2015), e0003351. https://doi.org/10.1371/journal.pntd.0003351 doi: 10.1371/journal.pntd.0003351
|
| [3] |
R. H. Elliot, Conjunctivitis in the tropics, Br. Med. J., 1 (1925), 12. https://doi.org/10.1136/bmj.1.3340.12-a doi: 10.1136/bmj.1.3340.12-a
|
| [4] |
K. N. Malu, Allergic conjunctivitis in Jos-Nigeria, Niger. Med. J., 55 (2014), 166–170. https://doi.org/10.4103/0300-1652.129664 doi: 10.4103/0300-1652.129664
|
| [5] | AAP Committee on Infectious Diseases, Red book: 2018-2021 Report of the committee on infectious diseases, 31st Eds., American Academy of Pediatrics, 2018. |
| [6] | S. Sangsawang, T. Tanutpanit, W. Mumtong, P. Pongsumpun, Local stability analysis of mathematical model for hemorrhagic conjunctivitis disease, Curr. Appl. Sci. Technol., 12 (2012), 189–197. |
| [7] | O. Ghazali, K. B. Chua, K. P. Ng, P. S. Hooi, M. A. Pallansch, M. S. Oberste, et al., An outbreak of acute haemorrhagic conjunctivitis in Melaka, Malaysia, Singapore Med. J., 44 (2003), 511–516. |
| [8] |
J. Chansaenroj, S. Vongpunsawad, J. Puenpa, A. Theamboonlers, V. Vuthitanachot, P. Chattakul, et al., Epidemic outbreak of acute haemorrhagic conjunctivitis caused by coxsackievirus A24 in Thailand, 2014, Epidemiol. Infect., 143 (2015), 3087–3093. https://doi.org/10.1017/S0950268815000643 doi: 10.1017/S0950268815000643
|
| [9] |
G. Chowell, E. Shim, F. Brauer, P. Diaz-Dueas, J. M. Hyman, C. Castillo-Chavez, Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: Application to the 2003 outbreak in Mexico, Stat. Med., 25 (2006), 1840–1857. https://doi.org/10.1002/sim.2352 doi: 10.1002/sim.2352
|
| [10] | J. Suksawat, S. Naowarat, Effect of rainfall on the transmission model of conjunctivitis, Adv. Environ. Biol., 8 (2014), 99–104. |
| [11] | B. Unyong, S. Naowarat, Stability analysis of conjunctivitis model with nonlinear incidence term, Aust. J. Basic Appl. Sci., 8 (2014), 52–58. |
| [12] | S. Sangthongjeen, A. Sudchumnong, S. Naowarat, Effect of educational campaign on transmission model of conjunctivitis, Aust. J. Basic Appl. Sci., 9 (2015), 811–815. |
| [13] |
F. Javed, A. Ahmad, A. H. Ali, E. Hincal, A. Amjad, Investigation of conjunctivitis adenovirus spread in human eyes by using bifurcation tool and numerical treatment approach, Phys. Scr., 99 (2024), 085253. https://doi.org/10.1088/1402-4896/ad62a5 doi: 10.1088/1402-4896/ad62a5
|
| [14] |
K. S. Nisar, A. Ahmad, M. Farman, E. Hincal, A. Zehra, Modeling and mathematical analysis of fractional order eye infection (conjunctivitis) virus model with treatment impact: Prelicence and dynamical transmission, Alex. Eng. J., 107 (2024), 33–46. https://doi.org/10.1016/j.aej.2024.07.020 doi: 10.1016/j.aej.2024.07.020
|
| [15] | C. S. Chou, A. Friedman, Introduction to mathematical biology: Modeling, analysis, and simulations, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-29638-8 |
| [16] | E. K. Yeargers, R. W. Shonkwiler, J. V. Herod, An introduction to the mathematics of biology: With computer algebra models, Boston: Birkhäuser, 2013. https://doi.org/10.1007/978-1-4757-1095-3 |
| [17] | A. El-shenawy, M. El-Gamel, D. Reda, Troesch's problem: A numerical study with cubic trigonometric B-spline method, Partial Differ. Equ. Appl. Math., 10 (2024), 100694. |
| [18] |
M. El-Gamel, A. El-Shenawy, A numerical solution of Blasius equation on a semi-infinity flat plate, SeMA, 75 (2018), 475–484. https://doi.org/10.1007/s40324-017-0145-x doi: 10.1007/s40324-017-0145-x
|
| [19] |
K. A. Aldwoah, M. A. Almalahi, M. Hleili, F. A. Alqarni, E. S. Aly, K. Shah, Analytical study of a modified-ABC fractional order breast cancer model, J. Appl. Math. Comput., 70 (2024), 3685–3716. https://doi.org/10.1007/s12190-024-02102-7 doi: 10.1007/s12190-024-02102-7
|
| [20] |
H. Khan, J. Alzabut, A. Shah, Z. He, S. Etemad, S. Rezapour, et al., On fractal-fractional waterborne disease model: A study on theoretical and numerical aspects of solutions via simulations, Fractals, 31 (2023), 2340055. https://doi.org/10.1142/S0218348X23400558 doi: 10.1142/S0218348X23400558
|
| [21] |
A. E. Hamza, O. Osman, A. Ali, A. Alsulami, K. Aldwoah, A. Mustafa, et al., Fractal-fractional-order modeling of liver fibrosis disease and its mathematical results with subinterval transitions, Fractal Fract., 8 (2024), 638. https://doi.org/10.3390/fractalfract8110638 doi: 10.3390/fractalfract8110638
|
| [22] |
T. Alraqad, M. A. Almalahi, N. Mohammed, A. Alahmade, K. A. Aldwoah, H. Saber, Modeling Ebola dynamics with a $\Phi$-piecewise hybrid fractional derivative approach, Fractal Fract., 8 (2024), 596. https://doi.org/10.3390/fractalfract8100596 doi: 10.3390/fractalfract8100596
|
| [23] |
A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity, Eur. Phys. J. Spec. Top., 193 (2011), 193–204. https://doi.org/10.1140/epjst/e2011-01391-5 doi: 10.1140/epjst/e2011-01391-5
|
| [24] |
D. Baleanu, Y. Karaca, L. Vázquez, J. E. Macías-Díaz, Advanced fractional calculus, differential equations and neural networks: Analysis, modeling and numerical computations, Phys. Scr., 98 (2023), 110201. https://doi.org/10.1088/1402-4896/acfe73 doi: 10.1088/1402-4896/acfe73
|
| [25] |
M. S. Algolam, O. Osman, A. Ali, A. Mustafa, K. Aldwoah, A. Alsulami, Fixed point and stability analysis of a tripled system of nonlinear fractional differential equations with n-nonlinear terms, Fractal Fract., 8 (2024), 697. https://doi.org/10.3390/fractalfract8120697 doi: 10.3390/fractalfract8120697
|
| [26] |
Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. https://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563
|
| [27] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
| [28] |
A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
|
| [29] |
K. Shah, T. Abdeljawad, Study of radioactive decay process of uranium atoms via fractals-fractional analysis, S. Afr. J. Chem. Eng., 48 (2024), 63–70. https://doi.org/10.1016/j.sajce.2024.01.003 doi: 10.1016/j.sajce.2024.01.003
|
| [30] |
A. Shah, H. Khan, M. De la Sen, J. Alzabut, S. Etemad, C. T. Deressa, et al., On non-symmetric fractal-fractional modeling for ice smoking: Mathematical analysis of solutions, Symmetry, 15 (2023), 87. https://doi.org/10.3390/sym15010087 doi: 10.3390/sym15010087
|
| [31] | D. Bainov, P. Simenonv, Impulsive differential equations: Periodic solutions and applications, Routledge, 1993. |
| [32] |
T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88. https://doi.org/10.1016/S0893-9659(97)00138-9 doi: 10.1016/S0893-9659(97)00138-9
|
| [33] |
R. Singh, J. Mishra, V. K. Gupta, Dynamical analysis of a tumor growth model under the effect of fractal fractional Caputo-Fabrizio derivative, Int. J. Math. Comput. Eng., 1 (2023), 115–126. https://doi.org/10.2478/ijmce-2023-0009 doi: 10.2478/ijmce-2023-0009
|