By applying the "coefficient extraction method" to the symmetric transformation of hypergeometric series due to Chu and Zhang (2014), we examine systematically five classes of infinite series of convergence rate "$ -1/4 $" containing binomial coefficients and harmonic numbers. Numerous closed formulae in terms of universal constants (such as $ \pi $, $ \ln2 $, and the Riemann zeta values) are established.
Citation: Chunli Li, Wenchang Chu. Five classes of binomial/harmonic series of convergence rate $ -1/4 $[J]. AIMS Mathematics, 2025, 10(7): 16264-16290. doi: 10.3934/math.2025727
By applying the "coefficient extraction method" to the symmetric transformation of hypergeometric series due to Chu and Zhang (2014), we examine systematically five classes of infinite series of convergence rate "$ -1/4 $" containing binomial coefficients and harmonic numbers. Numerous closed formulae in terms of universal constants (such as $ \pi $, $ \ln2 $, and the Riemann zeta values) are established.
| [1] |
K. Adegoke, R. Frontczak, T. Goy, On some series involving the binomial coefficients $ \binom3n{n}$, Notes Number Theory Discrete Math., 30 (2024), 319–334. https://doi.org/10.7546/nntdm.2024.30.2.319-334 doi: 10.7546/nntdm.2024.30.2.319-334
|
| [2] | W. N. Bailey, Generalized hypergeometric series, Cambridge: Cambridge University Press, 1935. |
| [3] | N. Batır, A. Sofo, A unified treatment of certain classes of combinatorial identities, J. Integer Seq., 24 (2021), 21.3.2. |
| [4] | A. T. Benjiamin, G. O. Preston, J. J. Quinn, A Stirling encounter with harmonic numbers, Math. Mag., 75 (2002), 94–103. |
| [5] | K. N. Boyadzhiev, Series with central binomial coefficients, Catalan numbers, and harmonic numbers, J. Integer Seq., 15 (2012), 12.1.7. |
| [6] | Britannica, Harmonic number: physics, accessed on 11 April 2024. Available form: https://www.britannica.com/science/harmonic-number. |
| [7] |
J. M. Campbell, P. Levrie, C. Xu, J. Zhao, On a problem involving the squares of odd harmonic numbers, Ramanujan J., 63 (2024), 387–408. https://doi.org/10.1007/s11139-023-00765-7 doi: 10.1007/s11139-023-00765-7
|
| [8] | H. Chen, Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers, J. Integer Seq., 19 (2016), 16.1.5. |
| [9] |
K. W. Chen, Generalized harmonic numbers and Euler sums, Int. J. Number Theory, 13 (2017), 513–528. https://doi.org/10.1142/S1793042116500883 doi: 10.1142/S1793042116500883
|
| [10] |
K. W. Chen, Hypergeometric series and generalized harmonic numbers, J. Differ. Equ. Appl., 31 (2025), 85–114. https://doi.org/10.1080/10236198.2024.2388746 doi: 10.1080/10236198.2024.2388746
|
| [11] |
W. Chu, Hypergeometric approach to Weideman's conjecture, Arch. Math., 87 (2006), 400–406. https://doi.org/10.1007/s00013-006-1773-z doi: 10.1007/s00013-006-1773-z
|
| [12] |
W. Chu, Infinite series on quadratic skew harmonic numbers, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 75. https://doi.org/10.1007/s13398-023-01407-9 doi: 10.1007/s13398-023-01407-9
|
| [13] | W. Chu, W. L. Zhang, Accelerating Dougall's ${}_5F_4$-sum and infinite series involving $\pi$, Math. Comp., 83 (2014), 475–512. |
| [14] | L. Comtet, Advanced combinatorics, The Art of Finite and Infinite Expansions, Dordrecht–Holland, The Netherlands, 1974. https://doi.org/10.1007/978-94-010-2196-8 |
| [15] |
K. Driver, H. Prodinger, C. Schneider, J. Weideman, Padé approximations to the logarithm Ⅲ: alternative methods and additional results, Ramanujan J., 12 (2006), 299–314. https://doi.org/10.1007/s11139-006-0144-5 doi: 10.1007/s11139-006-0144-5
|
| [16] |
C. Elsner, On recurrence formulae for sums involving binomial coefficients, Fibonacci Quart., 43 (2005), 31–45. https://doi.org/10.1080/00150517.2005.12428390 doi: 10.1080/00150517.2005.12428390
|
| [17] |
O. Furdui, Series involving products of two harmonic number, Math. Mag., 84 (2011), 371–377. https://doi.org/10.4169/math.mag.84.5.371 doi: 10.4169/math.mag.84.5.371
|
| [18] | D. H. Greene, D. E. Knuth, Mathematics for the analysis of algorithms, 2 Eds., Birkhauser, 1982. |
| [19] |
D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Mon., 92 (1985), 449–457. https://doi.org/10.1080/00029890.1985.11971651 doi: 10.1080/00029890.1985.11971651
|
| [20] |
C. L. Li, W. Chu, Series of convergence rate $-1/4$ containing harmonic numbers, Axioms, 12 (2023), 513. https://doi.org/10.3390/axioms12060513 doi: 10.3390/axioms12060513
|
| [21] |
C. L. Li, W. Chu, Second Theorem for ${}_2F_1(1/2)$-series and novel harmonic series identities, Mathematics, 12 (2024), 1381. https://doi.org/10.3390/math12091381 doi: 10.3390/math12091381
|
| [22] |
H. Liu, W. Wang, Gauss's theoremand harmonic number summation formula with certain mathematical constant, J. Differ. Equ. Appl., 25 (2019), 313–330. https://doi.org/10.1080/10236198.2019.1572127 doi: 10.1080/10236198.2019.1572127
|
| [23] |
A. S. Nimbran, P. Levrie, A. Sofo, Harmonic-binomial Euler-like sums via expansions of $(\arcsin x)^p$, RACSAM, 116 (2022), 23. https://doi.org/10.1007/s13398-021-01156-7 doi: 10.1007/s13398-021-01156-7
|
| [24] | E. D. Rainville, Special functions, New York: The Macmillan Company, 1960. |
| [25] | S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Math., 45 (1914), 350–372. |
| [26] |
A. Sebbar, Harmonic numbers, harmonic series and zeta function, Moroccan J. Pure Appl. Anal., 4 (2018), 122–157. https://doi.org/10.1515/mjpaa-2018-0012 doi: 10.1515/mjpaa-2018-0012
|
| [27] |
X. Y. Wang, W. Chu, Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients, Ramanujan J., 52 (2020), 641–668. https://doi.org/10.1007/s11139-019-00140-5 doi: 10.1007/s11139-019-00140-5
|
| [28] |
X. Y. Wang, W. Chu, Series with harmonic–like numbers and squared binomial coefficients, Rocky Mountain J. Math., 52 (2022), 1849–1866. https://doi.org/10.1216/rmj.2022.52.1849 doi: 10.1216/rmj.2022.52.1849
|
| [29] |
J. A. C. Weideman, Padé approximations to the logarithm Ⅰ: derivation via differential equations, Quaest. Math., 28 (2005), 375–390. https://doi.org/10.2989/16073600509486135 doi: 10.2989/16073600509486135
|
| [30] |
I. J. Zucker, On the series $ \sum_{k = 1}^{\infty} \binom2k{k}^{-1}k^{-n}$, J. Number Theory, 20 (1985), 92–102. https://doi.org/10.1016/0022-314X(85)90019-8 doi: 10.1016/0022-314X(85)90019-8
|