Research article Special Issues

Five classes of binomial/harmonic series of convergence rate $ -1/4 $

  • Received: 30 April 2025 Revised: 07 July 2025 Accepted: 15 July 2025 Published: 18 July 2025
  • MSC : Primary 11B65; Secondary 33C20, 65B10

  • By applying the "coefficient extraction method" to the symmetric transformation of hypergeometric series due to Chu and Zhang (2014), we examine systematically five classes of infinite series of convergence rate "$ -1/4 $" containing binomial coefficients and harmonic numbers. Numerous closed formulae in terms of universal constants (such as $ \pi $, $ \ln2 $, and the Riemann zeta values) are established.

    Citation: Chunli Li, Wenchang Chu. Five classes of binomial/harmonic series of convergence rate $ -1/4 $[J]. AIMS Mathematics, 2025, 10(7): 16264-16290. doi: 10.3934/math.2025727

    Related Papers:

  • By applying the "coefficient extraction method" to the symmetric transformation of hypergeometric series due to Chu and Zhang (2014), we examine systematically five classes of infinite series of convergence rate "$ -1/4 $" containing binomial coefficients and harmonic numbers. Numerous closed formulae in terms of universal constants (such as $ \pi $, $ \ln2 $, and the Riemann zeta values) are established.



    加载中


    [1] K. Adegoke, R. Frontczak, T. Goy, On some series involving the binomial coefficients $ \binom3n{n}$, Notes Number Theory Discrete Math., 30 (2024), 319–334. https://doi.org/10.7546/nntdm.2024.30.2.319-334 doi: 10.7546/nntdm.2024.30.2.319-334
    [2] W. N. Bailey, Generalized hypergeometric series, Cambridge: Cambridge University Press, 1935.
    [3] N. Batır, A. Sofo, A unified treatment of certain classes of combinatorial identities, J. Integer Seq., 24 (2021), 21.3.2.
    [4] A. T. Benjiamin, G. O. Preston, J. J. Quinn, A Stirling encounter with harmonic numbers, Math. Mag., 75 (2002), 94–103.
    [5] K. N. Boyadzhiev, Series with central binomial coefficients, Catalan numbers, and harmonic numbers, J. Integer Seq., 15 (2012), 12.1.7.
    [6] Britannica, Harmonic number: physics, accessed on 11 April 2024. Available form: https://www.britannica.com/science/harmonic-number.
    [7] J. M. Campbell, P. Levrie, C. Xu, J. Zhao, On a problem involving the squares of odd harmonic numbers, Ramanujan J., 63 (2024), 387–408. https://doi.org/10.1007/s11139-023-00765-7 doi: 10.1007/s11139-023-00765-7
    [8] H. Chen, Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers, J. Integer Seq., 19 (2016), 16.1.5.
    [9] K. W. Chen, Generalized harmonic numbers and Euler sums, Int. J. Number Theory, 13 (2017), 513–528. https://doi.org/10.1142/S1793042116500883 doi: 10.1142/S1793042116500883
    [10] K. W. Chen, Hypergeometric series and generalized harmonic numbers, J. Differ. Equ. Appl., 31 (2025), 85–114. https://doi.org/10.1080/10236198.2024.2388746 doi: 10.1080/10236198.2024.2388746
    [11] W. Chu, Hypergeometric approach to Weideman's conjecture, Arch. Math., 87 (2006), 400–406. https://doi.org/10.1007/s00013-006-1773-z doi: 10.1007/s00013-006-1773-z
    [12] W. Chu, Infinite series on quadratic skew harmonic numbers, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 75. https://doi.org/10.1007/s13398-023-01407-9 doi: 10.1007/s13398-023-01407-9
    [13] W. Chu, W. L. Zhang, Accelerating Dougall's ${}_5F_4$-sum and infinite series involving $\pi$, Math. Comp., 83 (2014), 475–512.
    [14] L. Comtet, Advanced combinatorics, The Art of Finite and Infinite Expansions, Dordrecht–Holland, The Netherlands, 1974. https://doi.org/10.1007/978-94-010-2196-8
    [15] K. Driver, H. Prodinger, C. Schneider, J. Weideman, Padé approximations to the logarithm Ⅲ: alternative methods and additional results, Ramanujan J., 12 (2006), 299–314. https://doi.org/10.1007/s11139-006-0144-5 doi: 10.1007/s11139-006-0144-5
    [16] C. Elsner, On recurrence formulae for sums involving binomial coefficients, Fibonacci Quart., 43 (2005), 31–45. https://doi.org/10.1080/00150517.2005.12428390 doi: 10.1080/00150517.2005.12428390
    [17] O. Furdui, Series involving products of two harmonic number, Math. Mag., 84 (2011), 371–377. https://doi.org/10.4169/math.mag.84.5.371 doi: 10.4169/math.mag.84.5.371
    [18] D. H. Greene, D. E. Knuth, Mathematics for the analysis of algorithms, 2 Eds., Birkhauser, 1982.
    [19] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Mon., 92 (1985), 449–457. https://doi.org/10.1080/00029890.1985.11971651 doi: 10.1080/00029890.1985.11971651
    [20] C. L. Li, W. Chu, Series of convergence rate $-1/4$ containing harmonic numbers, Axioms, 12 (2023), 513. https://doi.org/10.3390/axioms12060513 doi: 10.3390/axioms12060513
    [21] C. L. Li, W. Chu, Second Theorem for ${}_2F_1(1/2)$-series and novel harmonic series identities, Mathematics, 12 (2024), 1381. https://doi.org/10.3390/math12091381 doi: 10.3390/math12091381
    [22] H. Liu, W. Wang, Gauss's theoremand harmonic number summation formula with certain mathematical constant, J. Differ. Equ. Appl., 25 (2019), 313–330. https://doi.org/10.1080/10236198.2019.1572127 doi: 10.1080/10236198.2019.1572127
    [23] A. S. Nimbran, P. Levrie, A. Sofo, Harmonic-binomial Euler-like sums via expansions of $(\arcsin x)^p$, RACSAM, 116 (2022), 23. https://doi.org/10.1007/s13398-021-01156-7 doi: 10.1007/s13398-021-01156-7
    [24] E. D. Rainville, Special functions, New York: The Macmillan Company, 1960.
    [25] S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Math., 45 (1914), 350–372.
    [26] A. Sebbar, Harmonic numbers, harmonic series and zeta function, Moroccan J. Pure Appl. Anal., 4 (2018), 122–157. https://doi.org/10.1515/mjpaa-2018-0012 doi: 10.1515/mjpaa-2018-0012
    [27] X. Y. Wang, W. Chu, Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients, Ramanujan J., 52 (2020), 641–668. https://doi.org/10.1007/s11139-019-00140-5 doi: 10.1007/s11139-019-00140-5
    [28] X. Y. Wang, W. Chu, Series with harmonic–like numbers and squared binomial coefficients, Rocky Mountain J. Math., 52 (2022), 1849–1866. https://doi.org/10.1216/rmj.2022.52.1849 doi: 10.1216/rmj.2022.52.1849
    [29] J. A. C. Weideman, Padé approximations to the logarithm Ⅰ: derivation via differential equations, Quaest. Math., 28 (2005), 375–390. https://doi.org/10.2989/16073600509486135 doi: 10.2989/16073600509486135
    [30] I. J. Zucker, On the series $ \sum_{k = 1}^{\infty} \binom2k{k}^{-1}k^{-n}$, J. Number Theory, 20 (1985), 92–102. https://doi.org/10.1016/0022-314X(85)90019-8 doi: 10.1016/0022-314X(85)90019-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(654) PDF downloads(61) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog