Fixed-point theory, a major field of mathematics, analyzes outcomes that remain unchanged under particular operators, featuring multiple applications in mathematics, physics, engineering, computer science, and economics. This study presents the $ D^{*} $ iteration technique, a robust and effective iterative scheme for approximating fixed points in Suzuki generalized nonexpansive mappings. Within the context of uniformly convex Banach spaces, the novel scheme's weak and strong convergence properties were carefully addressed. The efficiency of this approach was demonstrated through detailed theoretical, numerical, and graphical assessments. Additionally, the stability of the iterative process was established. The method is used to generalize and enhance previous findings by approximating solutions for a fractional differential problem.
Citation: Aftab Hussain, Danish Ali, Amer Hassan Albargi. On assessing convergence and stability of a novel iterative method for fixed-point problems[J]. AIMS Mathematics, 2025, 10(7): 15333-15357. doi: 10.3934/math.2025687
Fixed-point theory, a major field of mathematics, analyzes outcomes that remain unchanged under particular operators, featuring multiple applications in mathematics, physics, engineering, computer science, and economics. This study presents the $ D^{*} $ iteration technique, a robust and effective iterative scheme for approximating fixed points in Suzuki generalized nonexpansive mappings. Within the context of uniformly convex Banach spaces, the novel scheme's weak and strong convergence properties were carefully addressed. The efficiency of this approach was demonstrated through detailed theoretical, numerical, and graphical assessments. Additionally, the stability of the iterative process was established. The method is used to generalize and enhance previous findings by approximating solutions for a fractional differential problem.
| [1] | B. Hazarika, S. Acharjee, D. S. Djordjevic, Advances in Functional Analysis and Fixed-point Theory, Springer Nature, (2024). https://doi.org/10.1007/978-981-99-9207-2 |
| [2] | M. Younis, L. Chen, D. Singh, Recent Developments in Fixed Point Theory: Theoretical Foundations and Real-World Applications, (2024). https://doi.org/10.1007/978-981-99-9546-2 |
| [3] | A. J. Zaslavski, Solutions of Fixed Point Problems with Computational Errors, Springer, (2024). https://doi.org/10.1007/978-3-031-50879-0 |
| [4] |
K. Ullah, K. Iqbal, M. Arshad, Some convergence results using K iteration process in CAT(0) spaces, Fixed Point Theory A., 2028 (2018), 11. https://doi.org/10.1186/s13663-018-0637-0 doi: 10.1186/s13663-018-0637-0
|
| [5] |
A. Hussain, D. Ali, E. Karapinar, Stability data dependency and errors estimation for general iteration method, Alex. Eng. J., 60 (2021), 703–710. https://doi.org/10.1016/j.aej.2020.10.002 doi: 10.1016/j.aej.2020.10.002
|
| [6] |
A. Hussain, N. Hussain, D. Ali, Estimation of newly established iterative scheme for generalized and nonexpansive mapping, J. Funct. Space., 2021 (2021), 1–9. https://doi.org/10.1155/2021/6675979 doi: 10.1155/2021/6675979
|
| [7] |
D. Ali, A. Hussain, E. Karapinar, P. Cholamjiak, Efficient fixed point iteration for generalized nonexpansive mappings and its stability in Banach spaces, Open Math., 20 (2022), 1753–1769. https://doi.org/10.1515/math-2022-0461 doi: 10.1515/math-2022-0461
|
| [8] | A. Hussain, D. Ali, N. Hussain, New Estimation Method of an Error for J Iteration, Axioms, (2022), 1–14. https://doi.org/10.3390/axioms11120677 |
| [9] |
J. Ahmad, M. Arshad, A. Hussain, H. A. Sulami, A Green's function based iterative approach for solutions of BVPs in symmetric spaces, Symmetry, 15 (2023), 1838. https://doi.org/10.3390/sym15101838 doi: 10.3390/sym15101838
|
| [10] |
A. Shaheen, A. Batool, A. Ali, H. A. Sulami, A. Hussain, Recent developments in iterative algorithms for digital metrics, Symmetry, 16 (2024), 368. https://doi.org/10.3390/sym16030368 doi: 10.3390/sym16030368
|
| [11] |
M. Rashid, A. Kalsoom, A. H. Albargi, A. Hussain, H. Sundas, Convergence result for solving the split fixed point problem with multiple output sets in nonlinear spaces, Mathematics, 12 (2024), 1825. https://doi.org/10.3390/math12121825 doi: 10.3390/math12121825
|
| [12] | E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pure. Appl., 6 (1890), 145–210. http://eudml.org/doc/235808 |
| [13] |
W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162
|
| [14] |
S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Am. Math. Soc., 59 (1976), 65–71. https://doi.org/10.2307/2042038 doi: 10.2307/2042038
|
| [15] | F. Gürsoy, A Picard-S iterative scheme for approximating fixed point of weak-contraction mappings, Filomat, 30. https://doi.org/10.2298/FIL1610829G |
| [16] |
M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
|
| [17] |
W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006–3014. https://doi.org/10.1016/j.cam.2010.12.022 doi: 10.1016/j.cam.2010.12.022
|
| [18] |
K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U
|
| [19] | K. Ullah, M. Arshad, New Iteration Process and numerical reckoning fixed points in Banach spaces, U.P.B. Sci. Bull., Series A, 79 (2017), 113–122. |
| [20] |
N. Hussain, K. Ullah, M. Arshadhh, Fixed point approximation for Suzuki generalized nonexpansive mappings via new iteration process, J. Nonlinear Convex A., 19 (2018), 1383–1393. https://doi.org/10.48550/arXiv.1802.09888 doi: 10.48550/arXiv.1802.09888
|
| [21] |
K. Ullah, M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear. Topol. Algebra., 7 (2018), 87–100. https://doi.org/10.52846/ami.v46i2.1048 doi: 10.52846/ami.v46i2.1048
|
| [22] | K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory Appl, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
| [23] |
T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
|
| [24] |
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 595–597. https://doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0
|
| [25] |
S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc, 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
|
| [26] | V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-72234-2 |
| [27] | A. M. Harder, Fixed Point Theory and Stability Results for Fixed Point Iteration Procedures, Ph.D. Thesis, University of Missouri-Rolla, Missouri, 1987. |
| [28] |
X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proc. Am. Math. Soc., 113 (1991), 727–731. https://doi.org/10.1090/S0002-9939-1991-1086345-8 doi: 10.1090/S0002-9939-1991-1086345-8
|
| [29] |
J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884
|
| [30] |
A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech., 47 (1967), 77–81. https://doi.org/10.1002/zamm.19670470202 doi: 10.1002/zamm.19670470202
|
| [31] |
M. O. Osilike, Stability of the Mann and Ishikawa Iteration procedures for f-strong pseudo-contractions and nonlinear equations of the f-strongly accretive type, J. Math. Anal. Appl, 227 (1998), 319–334. https://doi.org/10.1006/jmaa.1998.6075 doi: 10.1006/jmaa.1998.6075
|
| [32] | P. Chandrika, C. Rajivganthi, Control analysis of fractional-order extracellular delayed Hepatitis C virus model, Eur. Phys. J. Spec. Top., (2024). https://doi.org/10.1140/epjs/s11734-024-01202-6 |